How to resolve the algorithm 100 doors step by step in the ARM Assembly programming language

Published on 12 May 2024 09:40 PM

How to resolve the algorithm 100 doors step by step in the ARM Assembly programming language

Table of Contents

Problem Statement

There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it.
The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door.

Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed?

Alternate:
As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.

Let's start with the solution:

Step by Step solution about How to resolve the algorithm 100 doors step by step in the ARM Assembly programming language

Source code in the arm programming language

/* ARM assembly Raspberry PI  */
/*  program 100doors.s   */

/************************************/
/* Constantes                       */
/************************************/
.equ STDOUT, 1                                 @ Linux output console
.equ EXIT,   1                                 @ Linux syscall
.equ WRITE,  4                                 @ Linux syscall
.equ NBDOORS,   100
/*********************************/
/* Initialized data              */
/*********************************/
.data
sMessResult:       .ascii "The door "
sMessValeur:       .fill 11, 1, ' '            @ size => 11
                      .asciz "is open.\n"

/*********************************/
/* UnInitialized data            */
/*********************************/
.bss  
stTableDoors:	.skip   4 * NBDOORS
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main 
main:                                         @ entry of program 
    push {fp,lr}                              @ saves 2 registers 
    @ display first line
    ldr r3,iAdrstTableDoors                   @ table address
    mov r5,#1            
1:
    mov r4,r5
2:                                            @ begin loop
    ldr r2,[r3,r4,lsl #2]                     @ read doors index r4
    cmp r2,#0
    moveq r2,#1                               @ if r2 = 0   1 -> r2
    movne r2,#0                               @ if r2 = 1   0 -> r2
    str r2,[r3,r4,lsl #2]                     @ store value of doors
    add r4,r5                                 @ increment r4 with  r5 value
    cmp r4,#NBDOORS                           @ number of doors ?
    ble 2b                                    @ no -> loop
    add r5,#1                                 @ increment the increment !!
    cmp r5,#NBDOORS                           @ number of doors ?
    ble 1b                                    @ no -> loop

                                              @ loop display state doors
    mov r4,#0              
3:
    ldr r2,[r3,r4,lsl #2]                     @ read state doors r4 index
    cmp r2,#0
    beq 4f
    mov r0,r4                                 @ open -> display message
    ldr r1,iAdrsMessValeur                    @ display value index
    bl conversion10                           @ call function
    ldr r0,iAdrsMessResult
    bl affichageMess                          @ display message
4:
    add r4,#1
    cmp r4,#NBDOORS
    ble 3b                                    @ loop
 

100:                                          @ standard end of the program 
    mov r0, #0                                @ return code
    pop {fp,lr}                               @restaur 2 registers
    mov r7, #EXIT                             @ request to exit program
    svc #0                                    @ perform the system call

iAdrsMessValeur:                .int sMessValeur
iAdrstTableDoors:		.int stTableDoors
iAdrsMessResult:		.int sMessResult

/******************************************************************/
/*     display text with size calculation                         */ 
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
    push {r0,r1,r2,r7,lr}                     @ save  registres
    mov r2,#0                                 @ counter length 
1:                                            @ loop length calculation 
    ldrb r1,[r0,r2]                           @ read octet start position + index 
    cmp r1,#0                                 @ if 0 its over 
    addne r2,r2,#1                            @ else add 1 in the length 
    bne 1b                                    @ and loop 
                                              @ so here r2 contains the length of the message 
    mov r1,r0        			      @ address message in r1 
    mov r0,#STDOUT      		      @ code to write to the standard output Linux 
    mov r7, #WRITE                            @ code call system "write" 
    svc #0                                    @ call systeme 
    pop {r0,r1,r2,r7,lr}                      @ restaur des  2 registres */ 
    bx lr                                     @ return  
/******************************************************************/
/*     Converting a register to a decimal unsigned                */ 
/******************************************************************/
/* r0 contains value and r1 address area   */
/* r0 return size of result (no zero final in area) */
/* area size => 11 bytes          */
.equ LGZONECAL,   10
conversion10:
    push {r1-r4,lr}                            @ save registers 
    mov r3,r1
    mov r2,#LGZONECAL

1:	                                       @ start loop
    bl divisionpar10U                          @unsigned  r0 <- dividende. quotient ->r0 reste -> r1
    add r1,#48                                 @ digit	
    strb r1,[r3,r2]                            @ store digit on area
    cmp r0,#0                                  @ stop if quotient = 0 
    subne r2,#1                                @ else previous position
    bne 1b	                               @ and loop
    // and move digit from left of area
    mov r4,#0
2:
    ldrb r1,[r3,r2]
    strb r1,[r3,r4]
    add r2,#1
    add r4,#1
    cmp r2,#LGZONECAL
    ble 2b
    // and move spaces in end on area
    mov r0,r4                                 @ result length 
    mov r1,#' '                               @ space	
3:
    strb r1,[r3,r4]                           @ store space in area
    add r4,#1                                 @ next position
    cmp r4,#LGZONECAL
    ble 3b                                    @ loop if r4 <= area size

100:
    pop {r1-r4,lr}                            @ restaur registres 
    bx lr                                     @return

/***************************************************/
/*   division par 10   unsigned                    */
/***************************************************/
/* r0 dividende   */
/* r0 quotient */	
/* r1 remainder  */
divisionpar10U:
    push {r2,r3,r4, lr}
    mov r4,r0                                        @ save value
    //mov r3,#0xCCCD                                 @ r3 <- magic_number  lower   @ for Raspberry pi 3
    //movt r3,#0xCCCC                                @ r3 <- magic_number  upper   @ for Raspberry pi 3
    ldr r3,iMagicNumber                              @ for Raspberry pi 1 2
    umull r1, r2, r3, r0                             @ r1<- Lower32Bits(r1*r0) r2<- Upper32Bits(r1*r0) 
    mov r0, r2, LSR #3                               @ r2 <- r2 >> shift 3
    add r2,r0,r0, lsl #2                             @ r2 <- r0 * 5 
    sub r1,r4,r2, lsl #1                             @ r1 <- r4 - (r2 * 2)  = r4 - (r0 * 10)
    pop {r2,r3,r4,lr}
    bx lr                                            @ leave function 
iMagicNumber:            .int 0xCCCCCCCD

/*********************************************/
/* optimized version                         */
/*********************************************/
/* ARM assembly Raspberry PI  */
/*  program 100doors.s   */

/************************************/
/* Constantes                       */
/************************************/
.equ STDOUT, 1     @ Linux output console
.equ EXIT,   1     @ Linux syscall
.equ WRITE,  4     @ Linux syscall
.equ NBDOORS,   100
/*********************************/
/* Initialized data              */
/*********************************/
.data
sMessResult:       .ascii "The door "
sMessValeur:       .fill 11, 1, ' '                 @ size => 11
                   .asciz "is open.\n"

/*********************************/
/* UnInitialized data            */
/*********************************/
.bss  
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main 
main:                                               @ entry of program 
    push {fp,lr}                                    @ saves 2 registers 
                                                    @ display first line
    mov r5,#3                                       @ start value of increment
    mov r4,#1                                       @ start doors
                                                    @ loop display state doors
1:
    mov r0,r4                                       @ open -> display message
    ldr r1,iAdrsMessValeur                          @ display value index
    bl conversion10                                 @ call function
    ldr r0,iAdrsMessResult
    bl affichageMess                                @ display message
    add r4,r5                                       @ add increment
    add r5,#2                                       @ new increment
    cmp r4,#NBDOORS
    ble 1b                                          @ loop
 

100:   @ standard end of the program 
    mov r0, #0                                      @ return code
    pop {fp,lr}                                     @ restaur 2 registers
    mov r7, #EXIT                                   @ request to exit program
    svc #0                                          @ perform the system call

iAdrsMessValeur:                .int sMessValeur
iAdrsMessResult:		.int sMessResult

/******************************************************************/
/*     display text with size calculation                         */ 
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
    push {r0,r1,r2,r7,lr}                           @ save  registres
    mov r2,#0                                       @ counter length 
1:                                                  @ loop length calculation 
    ldrb r1,[r0,r2]                                 @ read octet start position + index 
    cmp r1,#0                                       @ if 0 its over 
    addne r2,r2,#1                                  @ else add 1 in the length 
    bne 1b                                          @ and loop 
                                                    @ so here r2 contains the length of the message 
    mov r1,r0        			            @ address message in r1 
    mov r0,#STDOUT      		            @ code to write to the standard output Linux 
    mov r7, #WRITE                                  @ code call system "write" 
    svc #0                                          @ call systeme 
    pop {r0,r1,r2,r7,lr}                            @ restaur des  2 registres */ 
    bx lr                                           @ return  
/******************************************************************/
/*     Converting a register to a decimal unsigned                */ 
/******************************************************************/
/* r0 contains value and r1 address area   */
/* r0 return size of result (no zero final in area) */
/* area size => 11 bytes          */
.equ LGZONECAL,   10
conversion10:
    push {r1-r4,lr}                                 @ save registers 
    mov r3,r1
    mov r2,#LGZONECAL

1:	                                            @ start loop
    bl divisionpar10U                               @ unsigned  r0 <- dividende. quotient ->r0 reste -> r1
    add r1,#48                                      @ digit	
    strb r1,[r3,r2]                                 @ store digit on area
    cmp r0,#0                                       @ stop if quotient = 0 
    subne r2,#1                                     @ else previous position
    bne 1b	                                    @ and loop
                                                    @ and move digit from left of area
    mov r4,#0
2:
    ldrb r1,[r3,r2]
    strb r1,[r3,r4]
    add r2,#1
    add r4,#1
    cmp r2,#LGZONECAL
    ble 2b
                                                    @ and move spaces in end on area
    mov r0,r4                                       @ result length 
    mov r1,#' '                                     @ space	
3:
    strb r1,[r3,r4]                                 @ store space in area
    add r4,#1                                       @ next position
    cmp r4,#LGZONECAL
    ble 3b                                          @ loop if r4 <= area size

100:
    pop {r1-r4,lr}                                  @ restaur registres 
    bx lr                                           @return

/***************************************************/
/*   division par 10   unsigned                    */
/***************************************************/
/* r0 dividende   */
/* r0 quotient */	
/* r1 remainder  */
divisionpar10U:
    push {r2,r3,r4, lr}
    mov r4,r0                                       @ save value
    //mov r3,#0xCCCD                                @ r3 <- magic_number  lower   @ for raspberry 3
    //movt r3,#0xCCCC                               @ r3 <- magic_number  upper   @ for raspberry 3
    ldr r3,iMagicNumber                             @ for raspberry 1 2
    umull r1, r2, r3, r0                            @ r1<- Lower32Bits(r1*r0) r2<- Upper32Bits(r1*r0) 
    mov r0, r2, LSR #3                              @ r2 <- r2 >> shift 3
    add r2,r0,r0, lsl #2                            @ r2 <- r0 * 5 
    sub r1,r4,r2, lsl #1                            @ r1 <- r4 - (r2 * 2)  = r4 - (r0 * 10)
    pop {r2,r3,r4,lr}
    bx lr                                           @ leave function 
iMagicNumber:            .int 0xCCCCCCCD

  

You may also check:How to resolve the algorithm Dragon curve step by step in the EasyLang programming language
You may also check:How to resolve the algorithm P-Adic numbers, basic step by step in the Go programming language
You may also check:How to resolve the algorithm The Name Game step by step in the REXX programming language
You may also check:How to resolve the algorithm Find limit of recursion step by step in the Scheme programming language
You may also check:How to resolve the algorithm Combinations and permutations step by step in the ALGOL 68 programming language