How to resolve the algorithm AVL tree step by step in the C programming language

Published on 7 June 2024 03:52 AM
#C

How to resolve the algorithm AVL tree step by step in the C programming language

Table of Contents

Problem Statement

In computer science, an AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; at no time do they differ by more than one because rebalancing is done ensure this is the case. Lookup, insertion, and deletion all take O(log n) time in both the average and worst cases, where n is the number of nodes in the tree prior to the operation. Insertions and deletions may require the tree to be rebalanced by one or more tree rotations. Note the tree of nodes comprise a set, so duplicate node keys are not allowed. AVL trees are often compared with red-black trees because they support the same set of operations and because red-black trees also take O(log n) time for the basic operations. Because AVL trees are more rigidly balanced, they are faster than red-black trees for lookup-intensive applications. Similar to red-black trees, AVL trees are height-balanced, but in general not weight-balanced nor μ-balanced; that is, sibling nodes can have hugely differing numbers of descendants.

Implement an AVL tree in the language of choice, and provide at least basic operations.

Red_black_tree_sort

Let's start with the solution: