How to resolve the algorithm AVL tree step by step in the Wren programming language
How to resolve the algorithm AVL tree step by step in the Wren programming language
Table of Contents
Problem Statement
In computer science, an AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; at no time do they differ by more than one because rebalancing is done ensure this is the case. Lookup, insertion, and deletion all take O(log n) time in both the average and worst cases, where n is the number of nodes in the tree prior to the operation. Insertions and deletions may require the tree to be rebalanced by one or more tree rotations. Note the tree of nodes comprise a set, so duplicate node keys are not allowed. AVL trees are often compared with red-black trees because they support the same set of operations and because red-black trees also take O(log n) time for the basic operations. Because AVL trees are more rigidly balanced, they are faster than red-black trees for lookup-intensive applications. Similar to red-black trees, AVL trees are height-balanced, but in general not weight-balanced nor μ-balanced; that is, sibling nodes can have hugely differing numbers of descendants.
Implement an AVL tree in the language of choice, and provide at least basic operations.
Red_black_tree_sort
Let's start with the solution:
Step by Step solution about How to resolve the algorithm AVL tree step by step in the Wren programming language
Source code in the wren programming language
class Node {
construct new(key, parent) {
_key = key
_parent = parent
_balance = 0
_left = null
_right = null
}
key { _key }
parent { _parent }
balance { _balance }
left { _left }
right { _right }
key=(k) { _key = k }
parent=(p) { _parent = p }
balance=(v) { _balance = v }
left=(n) { _left = n }
right= (n) { _right = n }
}
class AvlTree {
construct new() {
_root = null
}
insert(key) {
if (!_root) {
_root = Node.new(key, null)
} else {
var n = _root
while (true) {
if (n.key == key) return false
var parent = n
var goLeft = n.key > key
n = goLeft ? n.left : n.right
if (!n) {
if (goLeft) {
parent.left = Node.new(key, parent)
} else {
parent.right = Node.new(key, parent)
}
rebalance(parent)
break
}
}
}
return true
}
delete(delKey) {
if (!_root) return
var n = _root
var parent = _root
var delNode = null
var child = _root
while (child) {
parent = n
n = child
child = (delKey >= n.key) ? n.right : n.left
if (delKey == n.key) delNode = n
}
if (delNode) {
delNode.key = n.key
child = n.left ? n.left : n.right
if (_root.key == delKey) {
_root = child
if (_root) _root.parent = null
} else {
if (parent.left == n) {
parent.left = child
} else {
parent.right = child
}
if (child) child.parent = parent
rebalance(parent)
}
}
}
rebalance(n) {
setBalance([n])
var nn = n
if (nn.balance == -2) {
if (height(nn.left.left) >= height(nn.left.right)) {
nn = rotateRight(nn)
} else {
nn = rotateLeftThenRight(nn)
}
} else if (nn.balance == 2) {
if (height(nn.right.right) >= height(nn.right.left)) {
nn = rotateLeft(nn)
} else {
nn = rotateRightThenLeft(nn)
}
}
if (nn.parent) rebalance(nn.parent) else _root = nn
}
rotateLeft(a) {
var b = a.right
b.parent = a.parent
a.right = b.left
if (a.right) a.right.parent = a
b.left = a
a.parent = b
if (b.parent) {
if (b.parent.right == a) {
b.parent.right = b
} else {
b.parent.left = b
}
}
setBalance([a, b])
return b
}
rotateRight(a) {
var b = a.left
b.parent = a.parent
a.left = b.right
if (a.left) a.left.parent = a
b.right = a
a.parent = b
if (b.parent) {
if (b.parent.right == a) {
b.parent.right = b
} else {
b.parent.left = b
}
}
setBalance([a, b])
return b
}
rotateLeftThenRight(n) {
n.left = rotateLeft(n.left)
return rotateRight(n)
}
rotateRightThenLeft(n) {
n.right = rotateRight(n.right)
return rotateLeft(n)
}
height(n) {
if (!n) return -1
return 1 + height(n.left).max(height(n.right))
}
setBalance(nodes) {
for (n in nodes) n.balance = height(n.right) - height(n.left)
}
printKey() {
printKey(_root)
System.print()
}
printKey(n) {
if (n) {
printKey(n.left)
System.write("%(n.key) ")
printKey(n.right)
}
}
printBalance() {
printBalance(_root)
System.print()
}
printBalance(n) {
if (n) {
printBalance(n.left)
System.write("%(n.balance) ")
printBalance(n.right)
}
}
}
var tree = AvlTree.new()
System.print("Inserting values 1 to 10")
for (i in 1..10) tree.insert(i)
System.write("Printing key : ")
tree.printKey()
System.write("Printing balance : ")
tree.printBalance()
You may also check:How to resolve the algorithm Cheryl's birthday step by step in the Common Lisp programming language
You may also check:How to resolve the algorithm Averages/Root mean square step by step in the R programming language
You may also check:How to resolve the algorithm Terminal control/Display an extended character step by step in the Common Lisp programming language
You may also check:How to resolve the algorithm N'th step by step in the Delphi programming language
You may also check:How to resolve the algorithm Bitmap step by step in the Octave programming language