How to resolve the algorithm Algebraic data types step by step in the Bracmat programming language

Published on 12 May 2024 09:40 PM

How to resolve the algorithm Algebraic data types step by step in the Bracmat programming language

Table of Contents

Problem Statement

Some languages offer direct support for algebraic data types and pattern matching on them. While this of course can always be simulated with manual tagging and conditionals, it allows for terse code which is easy to read, and can represent the algorithm directly.

As an example, implement insertion in a red-black-tree. A red-black-tree is a binary tree where each internal node has a color attribute red or black. Moreover, no red node can have a red child, and every path from the root to an empty node must contain the same number of black nodes. As a consequence, the tree is balanced, and must be re-balanced after an insertion.

Red-Black Trees in a Functional Setting

Let's start with the solution:

Step by Step solution about How to resolve the algorithm Algebraic data types step by step in the Bracmat programming language

Source code in the bracmat programming language

( ( balance
  =   a x b y c zd
    .       !arg
          : ( B
            .   ( ( R
                  .   ((R.?a,?x,?b),?y,?c)
                    | (?a,?x,(R.?b,?y,?c))
                  )
                , ?zd
                )
              | ( ?a
                , ?x
                , ( R
                  .   ((R.?b,?y,?c),?zd)
                    | (?b,?y,(R.?c,?zd))
                  )
                )
            )
        & (R.(B.!a,!x,!b),!y,(B.!c,!zd))
      | !arg
  )
& ( ins
  =   C X tree a m z
    .     !arg:(?X.?tree)
        & !tree:(?C.?a,?m,?z)
        & (   !X:
            & balance$(!C.ins$(!X.!a),!m,!z)
          |   !X:>!m
            & balance$(!C.!a,!m,ins$(!X.!z))
          | !tree
          )
      | (R.,!X,)
  )
& ( insert
  =   X tree
    .   !arg:(?X.?tree)
      & ins$(!X.!tree):(?.?X)
      & (B.!X)
  )
& ( insertMany
  =   L R tree
    .     !arg:(%?L_%?R.?tree)
        & insertMany$(!L.!tree):?tree
        & insertMany$(!R.!tree)
      | insert$!arg
  )
);

(   (   it allows for terse code which is easy to read
      , and can represent the algorithm directly
    .
    )
  : ?values
& insertMany$(!values.):?tree
& lst$tree
& done
);

(tree=
  B
.   ( B
    .   (R.(B.,,),algorithm,(B.,allows,))
      , and
      , (B.,can,)
    )
  , code
  , ( R
    .   ( B
        .   (B.(R.,directly,),easy,)
          , for
          , (B.(R.,is,),it,)
        )
      , read
      , ( B
        .   (B.,represent,)
          , terse
          , (R.(B.,the,),to,(B.,which,))
        )
    )
);

  

You may also check:How to resolve the algorithm Rare numbers step by step in the Lambdatalk programming language
You may also check:How to resolve the algorithm Sorting algorithms/Bogosort step by step in the Perl programming language
You may also check:How to resolve the algorithm Solve a Numbrix puzzle step by step in the Prolog programming language
You may also check:How to resolve the algorithm Evaluate binomial coefficients step by step in the Forth programming language
You may also check:How to resolve the algorithm Subleq step by step in the PureBasic programming language