How to resolve the algorithm Benford's law step by step in the ZX Spectrum Basic programming language

Published on 12 May 2024 09:40 PM

How to resolve the algorithm Benford's law step by step in the ZX Spectrum Basic programming language

Table of Contents

Problem Statement

Benford's law, also called the first-digit law, refers to the frequency distribution of digits in many (but not all) real-life sources of data. In this distribution, the number 1 occurs as the first digit about 30% of the time, while larger numbers occur in that position less frequently: 9 as the first digit less than 5% of the time. This distribution of first digits is the same as the widths of gridlines on a logarithmic scale. Benford's law also concerns the expected distribution for digits beyond the first, which approach a uniform distribution. This result has been found to apply to a wide variety of data sets, including electricity bills, street addresses, stock prices, population numbers, death rates, lengths of rivers, physical and mathematical constants, and processes described by power laws (which are very common in nature). It tends to be most accurate when values are distributed across multiple orders of magnitude. A set of numbers is said to satisfy Benford's law if the leading digit

d

{\displaystyle d}

(

d ∈ { 1 , … , 9 }

{\displaystyle d\in {1,\ldots ,9}}

) occurs with probability For this task, write (a) routine(s) to calculate the distribution of first significant (non-zero) digits in a collection of numbers, then display the actual vs. expected distribution in the way most convenient for your language (table / graph / histogram / whatever). Use the first 1000 numbers from the Fibonacci sequence as your data set. No need to show how the Fibonacci numbers are obtained. You can generate them or load them from a file; whichever is easiest. Display your actual vs expected distribution.

For extra credit: Show the distribution for one other set of numbers from a page on Wikipedia. State which Wikipedia page it can be obtained from and what the set enumerates. Again, no need to display the actual list of numbers or the code to load them.

Let's start with the solution:

Step by Step solution about How to resolve the algorithm Benford's law step by step in the ZX Spectrum Basic programming language

Source code in the zx programming language

10 RANDOMIZE 
20 DIM b(9)
30 LET n=100
40 FOR i=1 TO n
50 GO SUB 1000
60 LET n$=STR$ fiboI
70 LET d=VAL n$(1)
80 LET b(d)=b(d)+1
90 NEXT i
100 PRINT "Digit";TAB 6;"Actual freq";TAB 18;"Expected freq"
110 FOR i=1 TO 9
120 LET pdi=(LN (i+1)/LN 10)-(LN i/LN 10)
130 PRINT i;TAB 6;b(i)/n;TAB 18;pdi
140 NEXT i
150 STOP 
1000 REM Fibonacci
1010 LET fiboI=0: LET b=1
1020 FOR j=1 TO i
1030 LET temp=fiboI+b
1040 LET fiboI=b
1050 LET b=temp
1060 NEXT j
1070 RETURN

  

You may also check:How to resolve the algorithm Evaluate binomial coefficients step by step in the Mathematica / Wolfram Language programming language
You may also check:How to resolve the algorithm Nested function step by step in the Clojure programming language
You may also check:How to resolve the algorithm Function definition step by step in the LSE64 programming language
You may also check:How to resolve the algorithm SEDOLs step by step in the Delphi programming language
You may also check:How to resolve the algorithm Program termination step by step in the E programming language