How to resolve the algorithm Cholesky decomposition step by step in the ATS programming language
How to resolve the algorithm Cholesky decomposition step by step in the ATS programming language
Table of Contents
Problem Statement
Every symmetric, positive definite matrix A can be decomposed into a product of a unique lower triangular matrix L and its transpose:
L
{\displaystyle L}
is called the Cholesky factor of
A
{\displaystyle A}
, and can be interpreted as a generalized square root of
A
{\displaystyle A}
, as described in Cholesky decomposition. In a 3x3 example, we have to solve the following system of equations: We can see that for the diagonal elements (
l
k k
{\displaystyle l_{kk}}
) of
L
{\displaystyle L}
there is a calculation pattern: or in general: For the elements below the diagonal (
l
i k
{\displaystyle l_{ik}}
, where
i
k
{\displaystyle i>k}
) there is also a calculation pattern: which can also be expressed in a general formula: Task description The task is to implement a routine which will return a lower Cholesky factor
L
{\displaystyle L}
for every given symmetric, positive definite nxn matrix
A
{\displaystyle A}
. You should then test it on the following two examples and include your output. Example 1: Example 2:
Let's start with the solution:
Step by Step solution about How to resolve the algorithm Cholesky decomposition step by step in the ATS programming language
Source code in the ats programming language
%{^
#include
#include
%}
#include "share/atspre_staload.hats"
macdef NAN = g0f2f ($extval (float, "NAN"))
macdef Zero = g0i2f 0
macdef One = g0i2f 1
(* The sqrt(3) function made part of the ‘g0float’ typekind series.
(The ats2-xprelude package will do this for you, but it is easy
to do if you are not using a lot of math functions. *)
extern fn {tk : tkind} g0float_sqrt : g0float tk -<> g0float tk
overload sqrt with g0float_sqrt
implement g0float_sqrt x = $extfcall (float, "sqrtf", x)
implement g0float_sqrt x = $extfcall (double, "sqrt", x)
implement g0float_sqrt x = $extfcall (ldouble, "sqrtl", x)
(*------------------------------------------------------------------*)
(* A "very little matrix library" *)
typedef Matrix_Index_Map (m1 : int, n1 : int, m0 : int, n0 : int) =
{i1, j1 : pos | i1 <= m1; j1 <= n1}
(int i1, int j1) -
[i0, j0 : pos | i0 <= m0; j0 <= n0]
@(int i0, int j0)
datatype Real_Matrix (tk : tkind,
m1 : int, n1 : int,
m0 : int, n0 : int) =
| Real_Matrix of (matrixref (g0float tk, m0, n0),
int m1, int n1, int m0, int n0,
Matrix_Index_Map (m1, n1, m0, n0))
typedef Real_Matrix (tk : tkind, m1 : int, n1 : int) =
[m0, n0 : pos] Real_Matrix (tk, m1, n1, m0, n0)
typedef Real_Vector (tk : tkind, m1 : int, n1 : int) =
[m1 == 1 || n1 == 1] Real_Matrix (tk, m1, n1)
typedef Real_Row (tk : tkind, n1 : int) = Real_Vector (tk, 1, n1)
typedef Real_Column (tk : tkind, m1 : int) = Real_Vector (tk, m1, 1)
extern fn {tk : tkind}
Real_Matrix_make_elt :
{m0, n0 : pos}
(int m0, int n0, g0float tk) -< !wrt >
Real_Matrix (tk, m0, n0, m0, n0)
extern fn {tk : tkind}
Real_Matrix_copy :
{m1, n1 : pos}
Real_Matrix (tk, m1, n1) -< !refwrt > Real_Matrix (tk, m1, n1)
extern fn {tk : tkind}
Real_Matrix_copy_to :
{m1, n1 : pos}
(Real_Matrix (tk, m1, n1), (* destination *)
Real_Matrix (tk, m1, n1)) -< !refwrt >
void
extern fn {}
Real_Matrix_dimension :
{tk : tkind}
{m1, n1 : pos}
Real_Matrix (tk, m1, n1) -<> @(int m1, int n1)
extern fn {tk : tkind}
Real_Matrix_get_at :
{m1, n1 : pos}
{i1, j1 : pos | i1 <= m1; j1 <= n1}
(Real_Matrix (tk, m1, n1), int i1, int j1) -< !ref > g0float tk
extern fn {tk : tkind}
Real_Matrix_set_at :
{m1, n1 : pos}
{i1, j1 : pos | i1 <= m1; j1 <= n1}
(Real_Matrix (tk, m1, n1), int i1, int j1, g0float tk) -< !refwrt >
void
extern fn {}
Real_Matrix_reflect_lower_triangle :
(* This operation makes every It is a change in how INDEXING
works. All the storage is still in the lower triangle. *)
{tk : tkind}
{n1 : pos}
{m0, n0 : pos}
Real_Matrix (tk, n1, n1, m0, n0) -<>
Real_Matrix (tk, n1, n1, m0, n0)
extern fn {tk : tkind}
Real_Matrix_fprint :
{m, n : pos}
(FILEref, Real_Matrix (tk, m, n)) -<1> void
overload copy with Real_Matrix_copy
overload copy_to with Real_Matrix_copy_to
overload dimension with Real_Matrix_dimension
overload [] with Real_Matrix_get_at
overload [] with Real_Matrix_set_at
overload reflect_lower_triangle with
Real_Matrix_reflect_lower_triangle
(*------------------------------------------------------------------*)
(* Implementation of the "very little matrix library" *)
implement {tk}
Real_Matrix_make_elt (m0, n0, elt) =
Real_Matrix (matrixref_make_elt (i2sz m0, i2sz n0, elt),
m0, n0, m0, n0, lam (i1, j1) => @(i1, j1))
implement {}
Real_Matrix_dimension A =
case+ A of Real_Matrix (_, m1, n1, _, _, _) => @(m1, n1)
implement {tk}
Real_Matrix_get_at (A, i1, j1) =
let
val+ Real_Matrix (storage, _, _, _, n0, index_map) = A
val @(i0, j0) = index_map (i1, j1)
in
matrixref_get_at (storage, pred i0, n0, pred j0)
end
implement {tk}
Real_Matrix_set_at (A, i1, j1, x) =
let
val+ Real_Matrix (storage, _, _, _, n0, index_map) = A
val @(i0, j0) = index_map (i1, j1)
in
matrixref_set_at (storage, pred i0, n0, pred j0, x)
end
implement {}
Real_Matrix_reflect_lower_triangle {..} {n1} A =
let
typedef t = intBtwe (1, n1)
val+ Real_Matrix (storage, n1, _, m0, n0, index_map) = A
in
Real_Matrix (storage, n1, n1, m0, n0,
lam (i, j) =>
index_map ((if j <= i then i else j) : t,
(if j <= i then j else i) : t))
end
implement {tk}
Real_Matrix_copy A =
let
val @(m1, n1) = dimension A
val C = Real_Matrix_make_elt (m1, n1, A[1, 1])
val () = copy_to (C, A)
in
C
end
implement {tk}
Real_Matrix_copy_to (Dst, Src) =
let
val @(m1, n1) = dimension Src
prval [m1 : int] EQINT () = eqint_make_gint m1
prval [n1 : int] EQINT () = eqint_make_gint n1
var i : intGte 1
in
for* {i : pos | i <= m1 + 1} .<(m1 + 1) - i>.
(i : int i) =>
(i := 1; i <> succ m1; i := succ i)
let
var j : intGte 1
in
for* {j : pos | j <= n1 + 1} .<(n1 + 1) - j>.
(j : int j) =>
(j := 1; j <> succ n1; j := succ j)
Dst[i, j] := Src[i, j]
end
end
implement {tk}
Real_Matrix_fprint {m, n} (outf, A) =
let
val @(m, n) = dimension A
var i : intGte 1
in
for* {i : pos | i <= m + 1} .<(m + 1) - i>.
(i : int i) =>
(i := 1; i <> succ m; i := succ i)
let
var j : intGte 1
in
for* {j : pos | j <= n + 1} .<(n + 1) - j>.
(j : int j) =>
(j := 1; j <> succ n; j := succ j)
let
typedef FILEstar = $extype"FILE *"
extern castfn FILEref2star : FILEref -<> FILEstar
val _ = $extfcall (int, "fprintf", FILEref2star outf,
"%16.6g", A[i, j])
in
end;
fprintln! (outf)
end
end
(*------------------------------------------------------------------*)
(* Cholesky-Banachiewicz, in place. See
https://en.wikipedia.org/w/index.php?title=Cholesky_decomposition&oldid=1149960985#The_Cholesky%E2%80%93Banachiewicz_and_Cholesky%E2%80%93Crout_algorithms
I would use Cholesky-Crout if my matrices were stored in column
major order. But it makes little difference. *)
extern fn {tk : tkind}
Real_Matrix_cholesky_decomposition :
(* Only the lower triangle is considered. *)
{n : pos}
Real_Matrix (tk, n, n) -< !refwrt > void
overload cholesky_decomposition with
Real_Matrix_cholesky_decomposition
implement {tk}
Real_Matrix_cholesky_decomposition {n} A =
let
val @(n, _) = dimension A
(* I arrange the nested loops somewhat differently from how it is
done in the Wikipedia article's C snippet. *)
fun
repeat {i, j : pos | j <= i; i <= n + 1} (* <-- allowed values *)
.<(n + 1) - i, i - j>. (* <-- proof of termination *)
(i : int i, j : int j) : void =
if i = n + 1 then
() (* All done. *)
else
let
fun
_sum {k : pos | k <= j} ..
(x : g0float tk, k : int k) : g0float tk =
if k = j then
x
else
_sum (x + (A[i, k] * A[j, k]), succ k)
val sum = _sum (Zero, 1)
in
if j = i then
begin
A[i, j] := sqrt (A[i, i] - sum);
repeat (succ i, 1)
end
else
begin
A[i, j] := (One / A[j, j]) * (A[i, j] - sum);
repeat (i, succ j)
end
end
in
repeat (1, 1)
end
(*------------------------------------------------------------------*)
fn {tk : tkind} (* We like Fortran, so COLUMN major here. *)
column_major_list_to_square_matrix
{n : pos}
(n : int n,
lst : list (g0float tk, n * n))
: Real_Matrix (tk, n, n) =
let
#define :: list_cons
prval () = mul_gte_gte_gte {n, n} ()
val A = Real_Matrix_make_elt (n, n, NAN)
val lstref : ref (List0 (g0float tk)) = ref lst
var j : intGte 1
in
for* {j : pos | j <= n + 1} .<(n + 1) - j>.
(j : int j) =>
(j := 1; j <> succ n; j := succ j)
let
var i : intGte 1
in
for* {i : pos | i <= n + 1} .<(n + 1) - i>.
(i : int i) =>
(i := 1; i <> succ n; i := succ i)
case- !lstref of
| hd :: tl =>
begin
A[i, j] := hd;
!lstref := tl
end
end;
A
end
implement
main0 () =
let
val _A =
column_major_list_to_square_matrix
(3, $list (25.0, 15.0, ~5.0,
0.0, 18.0, 0.0,
0.0, 0.0, 11.0))
val A = reflect_lower_triangle _A
and B = copy _A
val () =
begin
cholesky_decomposition B;
print! ("\nThe Cholesky decomposition of\n\n");
Real_Matrix_fprint (stdout_ref, A);
print! ("is\n");
Real_Matrix_fprint (stdout_ref, B)
end
val _A =
column_major_list_to_square_matrix
(4, $list (18.0, 22.0, 54.0, 42.0,
0.0, 70.0, 86.0, 62.0,
0.0, 0.0, 174.0, 134.0,
0.0, 0.0, 0.0, 106.0))
val A = reflect_lower_triangle _A
and B = copy _A
val () =
begin
cholesky_decomposition B;
print! ("\nThe Cholesky decomposition of\n\n");
Real_Matrix_fprint (stdout_ref, A);
print! ("is\n");
Real_Matrix_fprint (stdout_ref, B)
end
in
println! ()
end
(*------------------------------------------------------------------*)
You may also check:How to resolve the algorithm Hello world/Graphical step by step in the SenseTalk programming language
You may also check:How to resolve the algorithm Brownian tree step by step in the EasyLang programming language
You may also check:How to resolve the algorithm Animation step by step in the Standard ML programming language
You may also check:How to resolve the algorithm Sailors, coconuts and a monkey problem step by step in the 11l programming language
You may also check:How to resolve the algorithm Knuth's algorithm S step by step in the Nim programming language