How to resolve the algorithm Continued fraction/Arithmetic/Construct from rational number step by step in the Sidef programming language

Published on 12 May 2024 09:40 PM

How to resolve the algorithm Continued fraction/Arithmetic/Construct from rational number step by step in the Sidef programming language

Table of Contents

Problem Statement

The purpose of this task is to write a function

r 2 c f

(

i n t

{\displaystyle {\mathit {r2cf}}(\mathrm {int} }

N

1

,

i n t

{\displaystyle N_{1},\mathrm {int} }

N

2

)

{\displaystyle N_{2})}

, or

r 2 c f

(

F r a c t i o n

{\displaystyle {\mathit {r2cf}}(\mathrm {Fraction} }

N )

{\displaystyle N)}

, which will output a continued fraction assuming: The function should output its results one digit at a time each time it is called, in a manner sometimes described as lazy evaluation. To achieve this it must determine: the integer part; and remainder part, of

N

1

{\displaystyle N_{1}}

divided by

N

2

{\displaystyle N_{2}}

. It then sets

N

1

{\displaystyle N_{1}}

to

N

2

{\displaystyle N_{2}}

and

N

2

{\displaystyle N_{2}}

to the determined remainder part. It then outputs the determined integer part. It does this until

a b s

(

N

2

)

{\displaystyle \mathrm {abs} (N_{2})}

is zero. Demonstrate the function by outputing the continued fraction for:

2

{\displaystyle {\sqrt {2}}}

should approach

[ 1 ; 2 , 2 , 2 , 2 , … ]

{\displaystyle [1;2,2,2,2,\ldots ]}

try ever closer rational approximations until boredom gets the better of you: Try : Observe how this rational number behaves differently to

2

{\displaystyle {\sqrt {2}}}

and convince yourself that, in the same way as

3.7

{\displaystyle 3.7}

may be represented as

3.70

{\displaystyle 3.70}

when an extra decimal place is required,

[ 3 ; 7 ]

{\displaystyle [3;7]}

may be represented as

[ 3 ; 7 , ∞ ]

{\displaystyle [3;7,\infty ]}

when an extra term is required.

Let's start with the solution:

Step by Step solution about How to resolve the algorithm Continued fraction/Arithmetic/Construct from rational number step by step in the Sidef programming language

Source code in the sidef programming language

func r2cf(num, den) {
    func() {
        den || return nil
        var q = num//den
        (num, den) = (den, num - q*den)
        return q
    }
}

func showcf(f) {
    print "["
    var n = f()
    print "#{n}" if defined(n)
    print "; #{n}" while defined(n = f())
    print "]\n"
}

[
    [1/2, 3/1, 23/8, 13/11, 22/7, -151/77],
    [14142/10000, 141421/100000, 1414214/1000000, 14142136/10000000],
    [314285714/100000000],
].each { |seq|
    seq.each { |r| showcf(r2cf(r.nude)) }
    print "\n"
}


  

You may also check:How to resolve the algorithm Man or boy test step by step in the Haskell programming language
You may also check:How to resolve the algorithm Object serialization step by step in the Oz programming language
You may also check:How to resolve the algorithm 100 doors step by step in the make programming language
You may also check:How to resolve the algorithm HTTPS step by step in the Arturo programming language
You may also check:How to resolve the algorithm Null object step by step in the Swift programming language