How to resolve the algorithm Conway's Game of Life step by step in the Befunge programming language

Published on 12 May 2024 09:40 PM

How to resolve the algorithm Conway's Game of Life step by step in the Befunge programming language

Table of Contents

Problem Statement

The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves.

Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid.

Let's start with the solution:

Step by Step solution about How to resolve the algorithm Conway's Game of Life step by step in the Befunge programming language

Source code in the befunge programming language

00p10p20p30p&>40p&>50p60p>$#v~>:55+-vv+`1:%3:+*g04p03< >3/"P"%\56v>p\56*8*/8+:v
v5\`\"~"::-*3p06!:!-+67:_^#!<*1+70g*\:3/"P"%v^ ^::+*g04%<*0v`1:%3\gp08<
>6*`*#v_55+-#v_p10g1+10p>^pg08g07+gp08:+8/*8*65\p07:<^ >/10g-50g^87>+1+:01p/8/v
>%#74#<-!!70p 00g::1+00p:20g\-:0`*+20p10g::30g\-:0`*+^ ^2+2+g03*<*:v+g06p09:%2<
.v,:*93"[2J"0<>"H["39*,,,50g0v!:-1,+55$_:40g3*20g+2+2/\-40g%50g3^/%\ >:3-\3-90v
O>"l52?[">:#,_^v/3+2:*g05g04$_>:10p40g0^!:-1,g+4\0%2/+1+`1:%3\g+8<^: $v10!*-g<<
g+70g80gp:#v_$^>1-:::"P"%\"P"/8+:10v  >/10g+1-50g+50g%40g*+::3/"P"^>!|>g*70g80g
:p00%g04:-1<<$_^#!:pg01%"P"\*8%8gp<<  ^3\%g04+g04-1+g00%3:%9+4:-1p06\<90p01/g04


  

You may also check:How to resolve the algorithm Doubly-linked list/Traversal step by step in the Axe programming language
You may also check:How to resolve the algorithm Ethiopian multiplication step by step in the Draco programming language
You may also check:How to resolve the algorithm Hello world/Newbie step by step in the Lambdatalk programming language
You may also check:How to resolve the algorithm Maximum triangle path sum step by step in the Prolog programming language
You may also check:How to resolve the algorithm Parallel brute force step by step in the BaCon programming language