How to resolve the algorithm Count in factors step by step in the ARM Assembly programming language
Published on 12 May 2024 09:40 PM
How to resolve the algorithm Count in factors step by step in the ARM Assembly programming language
Table of Contents
Problem Statement
Write a program which counts up from 1, displaying each number as the multiplication of its prime factors. For the purpose of this task, 1 (unity) may be shown as itself.
2 is prime, so it would be shown as itself. 6 is not prime; it would be shown as
2 × 3
{\displaystyle 2\times 3}
. 2144 is not prime; it would be shown as
2 × 2 × 2 × 2 × 2 × 67
{\displaystyle 2\times 2\times 2\times 2\times 2\times 67}
.
Let's start with the solution:
Step by Step solution about How to resolve the algorithm Count in factors step by step in the ARM Assembly programming language
Source code in the arm programming language
/* ARM assembly Raspberry PI */
/* program countFactors.s */
/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes */
/************************************/
.include "../constantes.inc"
.equ NBFACT, 33
.equ MAXI, 1<<31
//.equ NOMBRE, 65537
//.equ NOMBRE, 99999999
.equ NOMBRE, 2144
//.equ NOMBRE, 529
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessNumber: .asciz "Number @ : "
szMessResultFact: .asciz "@ "
szCarriageReturn: .asciz "\n"
szErrorGen: .asciz "Program error !!!\n"
szMessPrime: .asciz "This number is prime.\n"
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
sZoneConv: .skip 24
tbZoneDecom: .skip 8 * NBFACT // factor 4 bytes, number of each factor 4 bytes
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: @ entry of program
ldr r7,iNombre @ number
mov r0,r7
ldr r1,iAdrsZoneConv
bl conversion10 @ call décimal conversion
ldr r0,iAdrszMessNumber
ldr r1,iAdrsZoneConv @ insert conversion in message
bl strInsertAtCharInc
bl affichageMess @ display message
mov r0,r7
ldr r1,iAdrtbZoneDecom
bl decompFact
cmp r0,#-1
beq 98f @ error ?
mov r1,r0
ldr r0,iAdrtbZoneDecom
bl displayDivisors
b 100f
98:
ldr r0,iAdrszErrorGen
bl affichageMess
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc #0 @ perform the system call
iAdrszCarriageReturn: .int szCarriageReturn
iAdrszMessResultFact: .int szMessResultFact
iAdrszErrorGen: .int szErrorGen
iAdrsZoneConv: .int sZoneConv
iAdrtbZoneDecom: .int tbZoneDecom
iAdrszMessNumber: .int szMessNumber
iNombre: .int NOMBRE
/******************************************************************/
/* display divisors function */
/******************************************************************/
/* r0 contains address of divisors area */
/* r1 contains the number of area items */
displayDivisors:
push {r2-r8,lr} @ save registers
cmp r1,#0
beq 100f
mov r2,r1
mov r3,#0 @ indice
mov r4,r0
1:
add r5,r4,r3,lsl #3
ldr r7,[r5] @ load factor
ldr r6,[r5,#4] @ load number of factor
mov r8,#0 @ display factor counter
2:
mov r0,r7
ldr r1,iAdrsZoneConv
bl conversion10 @ call décimal conversion
ldr r0,iAdrszMessResultFact
ldr r1,iAdrsZoneConv @ insert conversion in message
bl strInsertAtCharInc
bl affichageMess @ display message
add r8,#1 @ increment counter
cmp r8,r6 @ same factors number ?
blt 2b
add r3,#1 @ other ithem
cmp r3,r2 @ items maxi ?
blt 1b
ldr r0,iAdrszCarriageReturn
bl affichageMess
b 100f
100:
pop {r2-r8,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* factor decomposition */
/******************************************************************/
/* r0 contains number */
/* r1 contains address of divisors area */
/* r0 return divisors items in table */
decompFact:
push {r1-r8,lr} @ save registers
mov r5,r1
mov r8,r0 @ save number
bl isPrime @ prime ?
cmp r0,#1
beq 98f @ yes is prime
mov r4,#0 @ raz indice
mov r1,#2 @ first divisor
mov r6,#0 @ previous divisor
mov r7,#0 @ number of same divisors
2:
mov r0,r8 @ dividende
bl division @ r1 divisor r2 quotient r3 remainder
cmp r3,#0
bne 5f @ if remainder <> zero -> no divisor
mov r8,r2 @ else quotient -> new dividende
cmp r1,r6 @ same divisor ?
beq 4f @ yes
cmp r6,#0 @ no but is the first divisor ?
beq 3f @ yes
str r6,[r5,r4,lsl #2] @ else store in the table
add r4,r4,#1 @ and increment counter
str r7,[r5,r4,lsl #2] @ store counter
add r4,r4,#1 @ next item
mov r7,#0 @ and raz counter
3:
mov r6,r1 @ new divisor
4:
add r7,r7,#1 @ increment counter
b 7f @ and loop
/* not divisor -> increment next divisor */
5:
cmp r1,#2 @ if divisor = 2 -> add 1
addeq r1,#1
addne r1,#2 @ else add 2
b 2b
/* divisor -> test if new dividende is prime */
7:
mov r3,r1 @ save divisor
cmp r8,#1 @ dividende = 1 ? -> end
beq 10f
mov r0,r8 @ new dividende is prime ?
mov r1,#0
bl isPrime @ the new dividende is prime ?
cmp r0,#1
bne 10f @ the new dividende is not prime
cmp r8,r6 @ else dividende is same divisor ?
beq 9f @ yes
cmp r6,#0 @ no but is the first divisor ?
beq 8f @ yes it is a first
str r6,[r5,r4,lsl #2] @ else store in table
add r4,r4,#1 @ and increment counter
str r7,[r5,r4,lsl #2] @ and store counter
add r4,r4,#1 @ next item
8:
mov r6,r8 @ new dividende -> divisor prec
mov r7,#0 @ and raz counter
9:
add r7,r7,#1 @ increment counter
b 11f
10:
mov r1,r3 @ current divisor = new divisor
cmp r1,r8 @ current divisor > new dividende ?
ble 2b @ no -> loop
/* end decomposition */
11:
str r6,[r5,r4,lsl #2] @ store last divisor
add r4,r4,#1
str r7,[r5,r4,lsl #2] @ and store last number of same divisors
add r4,r4,#1
lsr r0,r4,#1 @ return number of table items
mov r3,#0
str r3,[r5,r4,lsl #2] @ store zéro in last table item
add r4,r4,#1
str r3,[r5,r4,lsl #2] @ and zero in counter same divisor
b 100f
98:
ldr r0,iAdrszMessPrime
bl affichageMess
mov r0,#1 @ return code
b 100f
99:
ldr r0,iAdrszErrorGen
bl affichageMess
mov r0,#-1 @ error code
b 100f
100:
pop {r1-r8,lr} @ restaur registers
bx lr
iAdrszMessPrime: .int szMessPrime
/***************************************************/
/* check if a number is prime */
/***************************************************/
/* r0 contains the number */
/* r0 return 1 if prime 0 else */
@2147483647
@4294967297
@131071
isPrime:
push {r1-r6,lr} @ save registers
cmp r0,#0
beq 90f
cmp r0,#17
bhi 1f
cmp r0,#3
bls 80f @ for 1,2,3 return prime
cmp r0,#5
beq 80f @ for 5 return prime
cmp r0,#7
beq 80f @ for 7 return prime
cmp r0,#11
beq 80f @ for 11 return prime
cmp r0,#13
beq 80f @ for 13 return prime
cmp r0,#17
beq 80f @ for 17 return prime
1:
tst r0,#1 @ even ?
beq 90f @ yes -> not prime
mov r2,r0 @ save number
sub r1,r0,#1 @ exposant n - 1
mov r0,#3 @ base
bl moduloPuR32 @ compute base power n - 1 modulo n
cmp r0,#1
bne 90f @ if <> 1 -> not prime
mov r0,#5
bl moduloPuR32
cmp r0,#1
bne 90f
mov r0,#7
bl moduloPuR32
cmp r0,#1
bne 90f
mov r0,#11
bl moduloPuR32
cmp r0,#1
bne 90f
mov r0,#13
bl moduloPuR32
cmp r0,#1
bne 90f
mov r0,#17
bl moduloPuR32
cmp r0,#1
bne 90f
80:
mov r0,#1 @ is prime
b 100f
90:
mov r0,#0 @ no prime
100: @ fin standard de la fonction
pop {r1-r6,lr} @ restaur des registres
bx lr @ retour de la fonction en utilisant lr
/********************************************************/
/* Calcul modulo de b puissance e modulo m */
/* Exemple 4 puissance 13 modulo 497 = 445 */
/* */
/********************************************************/
/* r0 nombre */
/* r1 exposant */
/* r2 modulo */
/* r0 return result */
moduloPuR32:
push {r1-r7,lr} @ save registers
cmp r0,#0 @ verif <> zero
beq 100f
cmp r2,#0 @ verif <> zero
beq 100f @
1:
mov r4,r2 @ save modulo
mov r5,r1 @ save exposant
mov r6,r0 @ save base
mov r3,#1 @ start result
mov r1,#0 @ division de r0,r1 par r2
bl division32R
mov r6,r2 @ base <- remainder
2:
tst r5,#1 @ exposant even or odd
beq 3f
umull r0,r1,r6,r3
mov r2,r4
bl division32R
mov r3,r2 @ result <- remainder
3:
umull r0,r1,r6,r6
mov r2,r4
bl division32R
mov r6,r2 @ base <- remainder
lsr r5,#1 @ left shift 1 bit
cmp r5,#0 @ end ?
bne 2b
mov r0,r3
100: @ fin standard de la fonction
pop {r1-r7,lr} @ restaur des registres
bx lr @ retour de la fonction en utilisant lr
/***************************************************/
/* division number 64 bits in 2 registers by number 32 bits */
/***************************************************/
/* r0 contains lower part dividende */
/* r1 contains upper part dividende */
/* r2 contains divisor */
/* r0 return lower part quotient */
/* r1 return upper part quotient */
/* r2 return remainder */
division32R:
push {r3-r9,lr} @ save registers
mov r6,#0 @ init upper upper part remainder !!
mov r7,r1 @ init upper part remainder with upper part dividende
mov r8,r0 @ init lower part remainder with lower part dividende
mov r9,#0 @ upper part quotient
mov r4,#0 @ lower part quotient
mov r5,#32 @ bits number
1: @ begin loop
lsl r6,#1 @ shift upper upper part remainder
lsls r7,#1 @ shift upper part remainder
orrcs r6,#1
lsls r8,#1 @ shift lower part remainder
orrcs r7,#1
lsls r4,#1 @ shift lower part quotient
lsl r9,#1 @ shift upper part quotient
orrcs r9,#1
@ divisor sustract upper part remainder
subs r7,r2
sbcs r6,#0 @ and substract carry
bmi 2f @ négative ?
@ positive or equal
orr r4,#1 @ 1 -> right bit quotient
b 3f
2: @ negative
orr r4,#0 @ 0 -> right bit quotient
adds r7,r2 @ and restaur remainder
adc r6,#0
3:
subs r5,#1 @ decrement bit size
bgt 1b @ end ?
mov r0,r4 @ lower part quotient
mov r1,r9 @ upper part quotient
mov r2,r7 @ remainder
100: @ function end
pop {r3-r9,lr} @ restaur registers
bx lr
/***************************************************/
/* ROUTINES INCLUDE */
/***************************************************/
.include "../affichage.inc"
You may also check:How to resolve the algorithm Nim game step by step in the C++ programming language
You may also check:How to resolve the algorithm MD5 step by step in the Nemerle programming language
You may also check:How to resolve the algorithm Forest fire step by step in the COBOL programming language
You may also check:How to resolve the algorithm Law of cosines - triples step by step in the FreeBASIC programming language
You may also check:How to resolve the algorithm URL decoding step by step in the Lasso programming language