How to resolve the algorithm Cramer's rule step by step in the REXX programming language
Published on 12 May 2024 09:40 PM
How to resolve the algorithm Cramer's rule step by step in the REXX programming language
Table of Contents
Problem Statement
Given
which in matrix format is
Then the values of
x , y
{\displaystyle x,y}
and
z
{\displaystyle z}
can be found as follows:
Given the following system of equations:
solve for
w
{\displaystyle w}
,
x
{\displaystyle x}
,
y
{\displaystyle y}
and
z
{\displaystyle z}
, using Cramer's rule.
Let's start with the solution:
Step by Step solution about How to resolve the algorithm Cramer's rule step by step in the REXX programming language
Source code in the rexx programming language
/* REXX Use Cramer's rule to compute solutions of given linear equations */
Numeric Digits 20
names='w x y z'
M=' 2 -1 5 1',
' 3 2 2 -6',
' 1 3 3 -1',
' 5 -2 -3 3'
v=' -3',
'-32',
'-47',
' 49'
Call mk_mat(m) /* M -> a.i.j */
Do j=1 To dim /* Show the input */
ol=''
Do i=1 To dim
ol=ol format(a.i.j,6)
End
ol=ol format(word(v,j),6)
Say ol
End
Say copies('-',35)
d=det(m) /* denominator determinant */
Do k=1 To dim /* construct nominator matrix */
Do j=1 To dim
Do i=1 To dim
If i=k Then
b.i.j=word(v,j)
Else
b.i.j=a.i.j
End
End
Call show_b
d.k=det(mk_str()) /* numerator determinant */
Say word(names,k) '=' d.k/d /* compute value of variable k */
End
Exit
mk_mat: Procedure Expose a. dim /* Turn list into matrix a.i.j */
Parse Arg list
dim=sqrt(words(list))
k=0
Do j=1 To dim
Do i=1 To dim
k=k+1
a.i.j=word(list,k)
End
End
Return
mk_str: Procedure Expose b. dim /* Turn matrix b.i.j into list */
str=''
Do j=1 To dim
Do i=1 To dim
str=str b.i.j
End
End
Return str
show_b: Procedure Expose b. dim /* show numerator matrix */
do j=1 To dim
ol=''
Do i=1 To dim
ol=ol format(b.i.j,6)
end
Call dbg ol
end
Return
det: Procedure /* compute determinant */
Parse Arg list
n=words(list)
call dbg 'det:' list
do dim=1 To 10
If dim**2=n Then Leave
End
call dbg 'dim='dim
If dim=2 Then Do
det=word(list,1)*word(list,4)-word(list,2)*word(list,3)
call dbg 'det=>'det
Return det
End
k=0
Do j=1 To dim
Do i=1 To dim
k=k+1
a.i.j=word(list,k)
End
End
Do j=1 To dim
ol=j
Do i=1 To dim
ol=ol format(a.i.j,6)
End
call dbg ol
End
det=0
Do i=1 To dim
ol=''
Do j=2 To dim
Do ii=1 To dim
If ii<>i Then
ol=ol a.ii.j
End
End
call dbg 'i='i 'ol='ol
If i//2 Then
det=det+a.i.1*det(ol)
Else
det=det-a.i.1*det(ol)
End
Call dbg 'det=>>>'det
Return det
sqrt: Procedure
/* REXX ***************************************************************
* EXEC to calculate the square root of a = 2 with high precision
**********************************************************************/
Parse Arg x,prec
If prec<9 Then prec=9
prec1=2*prec
eps=10**(-prec1)
k = 1
Numeric Digits 3
r0= x
r = 1
Do i=1 By 1 Until r=r0 | (abs(r*r-x)
r0 = r
r = (r + x/r) / 2
k = min(prec1,2*k)
Numeric Digits (k + 5)
End
Numeric Digits prec
r=r+0
Return r
dbg: Return
/*REXX program uses Cramer's rule to find and display solution of given linear equations*/
values= '-3 -32 -47 49' /*values of each matrix row of numbers.*/
variables= substr('abcdefghijklmnopqrstuvwxyz', 27 - words(values) ) /*variable names.*/
call makeM ' 2 -1 5 1 3 2 2 -6 1 3 3 -1 5 -2 -3 3'
do y=1 for sz; $= /*display the matrix (linear equations)*/
do x=1 for sz; $= $ right(psign(@.x.y), w)'*'substr(variables, x, 1)
end /*y*/ /* [↑] right─justify matrix elements.*/
pad= left('', length($) - 2); say $ ' = ' right( word(values, y), wv)
end /*x*/ /* [↑] obtain value of the equation. */
say; say
do k=1 for sz /*construct the nominator matrix. */
do j=1 for sz
do i=1 for sz; if i==k then !.i.j= word(values, j)
else !.i.j= @.i.j
end /*i*/
end /*j*/
say pad substr(variables,k,1) ' = ' right(det(makeL())/det(mat), digits()+2)
end /*k*/
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
makeL: $=; do x=1 for sz; do y=1 for sz; $= $ !.x.y; end; end; return $ /*matrix─►list*/
mSize: arg _; do sz=0 for 1e3; if sz*sz==_ then return; end; say 'error,bad matrix';exit 9
psign: parse arg num; if left(num, 1)\=='-' & x>1 then return "+"num; return num
/*──────────────────────────────────────────────────────────────────────────────────────*/
det: procedure; parse arg a b c d 1 nums; call mSize words(nums); _= 0
if sz==2 then return a*d - b*c
do j=1 for sz
do i=1 for sz; _= _ + 1; @.i.j= word(nums, _)
end /*i*/
end
aa= 0
do i=1 for sz; odd= i//2; $=
do j=2 for sz-1
do k=1 for sz; if k\==i then $= $ @.k.j
end /*k*/
end /*j*/
aa= aa - (-1 ** odd) * @.i.1 * det($)
end; /*i*/; return aa
/*──────────────────────────────────────────────────────────────────────────────────────*/
makeM: procedure expose @. values mat sz w wv; parse arg mat; call mSize words(mat)
#= 0; wv= 0; w= 0
do j=1 for sz; wv= max(wv, length( word( values, j) ) )
do k=1 for sz; #= #+1; @.k.j= word(mat, #); w= max(w, length(@.k.j))
end /*k*/
end; /*j*/; w= w + 1; return
You may also check:How to resolve the algorithm User input/Text step by step in the Julia programming language
You may also check:How to resolve the algorithm Factors of an integer step by step in the FALSE programming language
You may also check:How to resolve the algorithm Taxicab numbers step by step in the Scheme programming language
You may also check:How to resolve the algorithm Abbreviations, simple step by step in the Racket programming language
You may also check:How to resolve the algorithm Call a function in a shared library step by step in the PowerBASIC programming language