How to resolve the algorithm Dining philosophers step by step in the D programming language

Published on 12 May 2024 09:40 PM
#D

How to resolve the algorithm Dining philosophers step by step in the D programming language

Table of Contents

Problem Statement

The dining philosophers problem illustrates non-composability of low-level synchronization primitives like semaphores. It is a modification of a problem posed by Edsger Dijkstra. Five philosophers, Aristotle, Kant, Spinoza, Marx, and Russell (the tasks) spend their time thinking and eating spaghetti. They eat at a round table with five individual seats. For eating each philosopher needs two forks (the resources). There are five forks on the table, one left and one right of each seat. When a philosopher cannot grab both forks it sits and waits. Eating takes random time, then the philosopher puts the forks down and leaves the dining room. After spending some random time thinking about the nature of the universe, he again becomes hungry, and the circle repeats itself. It can be observed that a straightforward solution, when forks are implemented by semaphores, is exposed to deadlock. There exist two deadlock states when all five philosophers are sitting at the table holding one fork each. One deadlock state is when each philosopher has grabbed the fork left of him, and another is when each has the fork on his right. There are many solutions of the problem, program at least one, and explain how the deadlock is prevented.

Let's start with the solution:

Step by Step solution about How to resolve the algorithm Dining philosophers step by step in the D programming language

Source code in the d programming language

import std.stdio, std.algorithm, std.string, std.parallelism,
       core.sync.mutex;

void eat(in size_t i, in string name, Mutex[] forks) {
    writeln(name, " is hungry.");
    immutable j = (i + 1) % forks.length;

    // Take forks i and j. The lower one first to prevent deadlock.
    auto fork1 = forks[min(i, j)];
    auto fork2 = forks[max(i, j)];

    fork1.lock;
    scope(exit) fork1.unlock;

    fork2.lock;
    scope(exit) fork2.unlock;

    writeln(name, " is eating.");
    writeln(name, " is full.");
}

void think(in string name) {
    writeln(name, " is thinking.");
}

void main() {
    const philosophers = "Aristotle Kant Spinoza Marx Russell".split;
    Mutex[philosophers.length] forks;
    foreach (ref fork; forks)
        fork = new Mutex;

    defaultPoolThreads = forks.length;
    foreach (i, philo; taskPool.parallel(philosophers)) {
        foreach (immutable _; 0 .. 100) {
            eat(i, philo, forks);
            philo.think;
        }
    }
}


  

You may also check:How to resolve the algorithm Abelian sandpile model/Identity step by step in the Ruby programming language
You may also check:How to resolve the algorithm Optional parameters step by step in the Arturo programming language
You may also check:How to resolve the algorithm Bitcoin/public point to address step by step in the Go programming language
You may also check:How to resolve the algorithm Stack step by step in the Nanoquery programming language
You may also check:How to resolve the algorithm Real constants and functions step by step in the Asymptote programming language