How to resolve the algorithm Factors of a Mersenne number step by step in the ALGOL 68 programming language
How to resolve the algorithm Factors of a Mersenne number step by step in the ALGOL 68 programming language
Table of Contents
Problem Statement
A Mersenne number is a number in the form of 2P-1. If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime). In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test. There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar). The following is how to implement this modPow yourself: For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step: Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N). These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.
Using the above method find a factor of 2929-1 (aka M929)
Let's start with the solution:
Step by Step solution about How to resolve the algorithm Factors of a Mersenne number step by step in the ALGOL 68 programming language
Source code in the algol programming language
MODE ISPRIMEINT = INT;
PR READ "prelude/is_prime.a68" PR;
MODE POWMODSTRUCT = INT;
PR READ "prelude/pow_mod.a68" PR;
PROC m factor = (INT p)INT:BEGIN
INT m factor;
INT max k, msb, n, q;
FOR i FROM bits width - 2 BY -1 TO 0 WHILE ( BIN p SHR i AND 2r1 ) = 2r0 DO
msb := i
OD;
max k := ENTIER sqrt(max int) OVER p; # limit for k to prevent overflow of max int #
FOR k FROM 1 TO max k DO
q := 2*p*k + 1;
IF NOT is prime(q) THEN
SKIP
ELIF q MOD 8 /= 1 AND q MOD 8 /= 7 THEN
SKIP
ELSE
n := pow mod(2,p,q);
IF n = 1 THEN
m factor := q;
return
FI
FI
OD;
m factor := 0;
return:
m factor
END;
BEGIN
INT exponent, factor;
print("Enter exponent of Mersenne number:");
read(exponent);
IF NOT is prime(exponent) THEN
print(("Exponent is not prime: ", exponent, new line))
ELSE
factor := m factor(exponent);
IF factor = 0 THEN
print(("No factor found for M", exponent, new line))
ELSE
print(("M", exponent, " has a factor: ", factor, new line))
FI
FI
END
You may also check:How to resolve the algorithm Loops/For step by step in the Fortran programming language
You may also check:How to resolve the algorithm Zig-zag matrix step by step in the uBasic/4tH programming language
You may also check:How to resolve the algorithm Church numerals step by step in the Typed Racket programming language
You may also check:How to resolve the algorithm Anadromes step by step in the Common Lisp programming language
You may also check:How to resolve the algorithm Function composition step by step in the M2000 Interpreter programming language