How to resolve the algorithm First perfect square in base n with n unique digits step by step in the C# programming language

Published on 12 May 2024 09:40 PM

How to resolve the algorithm First perfect square in base n with n unique digits step by step in the C# programming language

Table of Contents

Problem Statement

Find the first perfect square in a given base N that has at least N digits and exactly N significant unique digits when expressed in base N. E.G. In base 10, the first perfect square with at least 10 unique digits is 1026753849 (32043²). You may use analytical methods to reduce the search space, but the code must do a search. Do not use magic numbers or just feed the code the answer to verify it is correct.

Let's start with the solution:

Step by Step solution about How to resolve the algorithm First perfect square in base n with n unique digits step by step in the C# programming language

The provided C# program is designed to find the square roots of numbers using various number bases and identify patterns in the resulting digits. Here's a detailed explanation:

  1. Constants and Variables:

    • Byte Base: Represents the current number base being examined.
    • Byte bmo: Stores the base minus one.
    • Byte blim: Keeps track of the number of digits from the left that need to be checked.
    • Byte ic: Counts the number of digits being checked.
    • DateTime st0: Used to measure the total execution time.
    • BigInteger bllim: Represents the limit for the number of digits to be checked.
    • BigInteger threshold: Sets a limit for the square to avoid unnecessary calculations.
    • HashSet hs: A set used to store the digits encountered while checking for patterns.
    • HashSet o: A set to store the original digits of the square root.
    • String chars: Contains all the digits and characters used in the number representation.
    • List limits: A list to store the limits for checking patterns based on the number base.
    • String ms: The minimum value string used in calculations.
  2. Helper Functions:

    • string toStr(BigInteger b): Converts a BigInteger to a string representation in the current base.
    • bool allInQS(BigInteger b): Checks if all digits in a portion of the square are present in the base.
    • bool allInS(BigInteger b): Checks if all digits in the square are present in the base.
    • bool allInQ(BigInteger b): Similar to allInQS but checks for uneven digit distribution.
    • bool allIn(BigInteger b): Similar to allInS but checks for uneven digit distribution.
    • BigInteger to10(String s): Converts a string to a BigInteger in base 10.
    • string fixup(int n): Generates a minimum value string with an optional extra digit inserted.
  3. Main Logic:

    • The program iterates through various number bases from 2 to 28.
    • For each base, it calculates the square roots of numbers and checks for patterns in the resulting digits.
    • The limits for checking patterns are calculated and stored in the limits list.
    • The minimum value string ms is determined based on the base and other parameters.
    • The program then enters a loop to perform the calculations for the current base.
    • It checks if the square of the current root exceeds the threshold, and if so, it adjusts the limits and continues the calculations.
    • When the loop exits, it means that a square root with the desired properties has been found.
  4. Output:

    • The program prints the results for each base, including the base value, increment value, minimum value string digit, root, square, test count, time taken for the current base, and the total time taken so far.
  5. Summary: This program explores the properties of square roots in different number bases, aiming to identify patterns and relationships in the resulting digits. It performs extensive calculations and measurements to provide insights into these numerical curiosities.

Source code in the csharp programming language

using System;
using System.Collections.Generic;
using System.Numerics;

static class Program
{
    static byte Base, bmo, blim, ic; static DateTime st0; static BigInteger bllim, threshold;
    static HashSet<byte> hs = new HashSet<byte>(), o = new HashSet<byte>();
    static string chars = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz|";
    static List<BigInteger> limits;
    static string ms;

    // convert BigInteger to string using current base
    static string toStr(BigInteger b) {
        string res = ""; BigInteger re; while (b > 0) {
            b = BigInteger.DivRem(b, Base, out re); res = chars[(byte)re] + res;
        } return res;
    }

    // check for a portion of digits, bailing if uneven
    static bool allInQS(BigInteger b) {
        BigInteger re; int c = ic; hs.Clear(); hs.UnionWith(o); while (b > bllim) {
            b = BigInteger.DivRem(b, Base, out re);
            hs.Add((byte)re); c += 1; if (c > hs.Count) return false;
        } return true;
    }

    // check for a portion of digits, all the way to the end
    static bool allInS(BigInteger b) {
        BigInteger re; hs.Clear(); hs.UnionWith(o); while (b > bllim) {
            b = BigInteger.DivRem(b, Base, out re); hs.Add((byte)re);
        } return hs.Count == Base;
    }

    // check for all digits, bailing if uneven
    static bool allInQ(BigInteger b) {
        BigInteger re; int c = 0; hs.Clear(); while (b > 0) {
            b = BigInteger.DivRem(b, Base, out re);
            hs.Add((byte)re); c += 1; if (c > hs.Count) return false;
        } return true;
    }

    // check for all digits, all the way to the end
    static bool allIn(BigInteger b) {
        BigInteger re; hs.Clear(); while (b > 0) {
            b = BigInteger.DivRem(b, Base, out re); hs.Add((byte)re);
        } return hs.Count == Base;
    }

    // parse a string into a BigInteger, using current base
    static BigInteger to10(string s) {
        BigInteger res = 0; foreach (char i in s) res = res * Base + chars.IndexOf(i);
        return res;
    }

    // returns the minimum value string, optionally inserting extra digit
    static string fixup(int n) {
        string res = chars.Substring(0, Base); if (n > 0) res = res.Insert(n, n.ToString());
        return "10" + res.Substring(2);
    }

    // checks the square against the threshold, advances various limits when needed
    static void check(BigInteger sq) {
        if (sq > threshold) {
            o.Remove((byte)chars.IndexOf(ms[blim])); blim -= 1; ic -= 1;
            threshold = limits[bmo - blim - 1]; bllim = to10(ms.Substring(0, blim + 1));
        }
    }

    // performs all the caclulations for the current base
    static void doOne() {
        limits = new List<BigInteger>();
        bmo = (byte)(Base - 1); byte dr = 0; if ((Base & 1) == 1) dr = (byte)(Base >> 1);
        o.Clear(); blim = 0;
        byte id = 0; int inc = 1; long i = 0; DateTime st = DateTime.Now; if (Base == 2) st0 = st;
        byte[] sdr = new byte[bmo]; byte rc = 0; for (i = 0; i < bmo; i++) {
            sdr[i] = (byte)((i * i) % bmo); rc += sdr[i] == dr ? (byte)1 : (byte)0;
            sdr[i] += sdr[i] == 0 ? bmo : (byte)0;
        } i = 0; if (dr > 0) {
            id = Base;
            for (i = 1; i <= dr; i++) if (sdr[i] >= dr) if (id > sdr[i]) id = sdr[i]; id -= dr;
            i = 0;
        } ms = fixup(id);
        BigInteger sq = to10(ms); BigInteger rt = new BigInteger(Math.Sqrt((double)sq) + 1);
        sq = rt * rt; if (Base > 9) {
            for (int j = 1; j < Base; j++)
                limits.Add(to10(ms.Substring(0, j) + new string(chars[bmo], Base - j + (rc > 0 ? 0 : 1))));
            limits.Reverse(); while (sq < limits[0]) { rt++; sq = rt * rt; }
        }
        BigInteger dn = (rt << 1) + 1; BigInteger d = 1; if (Base > 3 && rc > 0) {
            while (sq % bmo != dr) { rt += 1; sq += dn; dn += 2; } // alligns sq to dr
            inc = bmo / rc;
            if (inc > 1) { dn += rt * (inc - 2) - 1; d = inc * inc; }
            dn += dn + d;
        }
        d <<= 1; if (Base > 9) {
            blim = 0; while (sq < limits[bmo - blim - 1]) blim++; ic = (byte)(blim + 1);
            threshold = limits[bmo - blim - 1];
            if (blim > 0) for (byte j = 0; j <= blim; j++) o.Add((byte)chars.IndexOf(ms[j]));
            if (blim > 0) bllim = to10(ms.Substring(0, blim + 1)); else bllim = 0;
            if (Base > 5 && rc > 0)
                do { if (allInQS(sq)) break; sq += dn; dn += d; i += 1; check(sq); } while (true);
            else
                do { if (allInS(sq)) break; sq += dn; dn += d; i += 1; check(sq); } while (true);
        } else {
            if (Base > 5 && rc > 0)
                do { if (allInQ(sq)) break; sq += dn; dn += d; i += 1; } while (true);
            else
                do { if (allIn(sq)) break; sq += dn; dn += d; i += 1; } while (true);
        } rt += i * inc;
        Console.WriteLine("{0,3}  {1,2}  {2,2} {3,20} -> {4,-40} {5,10} {6,9:0.0000}s  {7,9:0.0000}s",
            Base, inc, (id > 0 ? chars.Substring(id, 1) : " "), toStr(rt), toStr(sq), i,
            (DateTime.Now - st).TotalSeconds, (DateTime.Now - st0).TotalSeconds);
    }

    static void Main(string[] args) {
        Console.WriteLine("base inc id                 root    square" +
            "                                   test count    time        total");
        for (Base = 2; Base <= 28; Base++) doOne();
        Console.WriteLine("Elasped time was {0,8:0.00} minutes", (DateTime.Now - st0).TotalMinutes);
    }
}


  

You may also check:How to resolve the algorithm Hello world/Newline omission step by step in the IWBASIC programming language
You may also check:How to resolve the algorithm Text processing/1 step by step in the Go programming language
You may also check:How to resolve the algorithm Video display modes step by step in the Ring programming language
You may also check:How to resolve the algorithm Determine sentence type step by step in the Phix programming language
You may also check:How to resolve the algorithm Tree traversal step by step in the jq programming language