How to resolve the algorithm Forest fire step by step in the Wren programming language
How to resolve the algorithm Forest fire step by step in the Wren programming language
Table of Contents
Problem Statement
Implement the Drossel and Schwabl definition of the forest-fire model.
It is basically a 2D cellular automaton where each cell can be in three distinct states (empty, tree and burning) and evolves according to the following rules (as given by Wikipedia) Neighborhood is the Moore neighborhood; boundary conditions are so that on the boundary the cells are always empty ("fixed" boundary condition). At the beginning, populate the lattice with empty and tree cells according to a specific probability (e.g. a cell has the probability 0.5 to be a tree). Then, let the system evolve. Task's requirements do not include graphical display or the ability to change parameters (probabilities p and f ) through a graphical or command line interface.
Let's start with the solution:
Step by Step solution about How to resolve the algorithm Forest fire step by step in the Wren programming language
Source code in the wren programming language
import "random" for Random
import "io" for Stdin
var rand = Random.new()
var rows = 20
var cols = 30
var p = 0.01
var f = 0.001
var rx = rows + 2
var cx = cols + 2
var step = Fn.new { |dst, src|
for (r in 1..rows) {
for (c in 1..cols) {
var x = r*cx + c
dst[x] = src[x]
if (dst[x] == "#") {
// rule 1. A burning cell turns into an empty cell
dst[x] = " "
} else if(dst[x] == "T") {
// rule 2. A tree will burn if at least one neighbor is burning
if (src[x-cx-1] == "#" || src[x-cx] == "#" || src[x-cx+1] == "#" ||
src[x-1] == "#" || src[x+1] == "#" ||
src[x+cx-1] == "#" || src[x+cx] == "#" || src[x+cx+1] == "#") {
dst[x] = "#"
// rule 3. A tree ignites with probability f
// even if no neighbor is burning
} else if (rand.float() < f) {
dst[x] = "#"
}
} else {
// rule 4. An empty space fills with a tree with probability p
if (rand.float() < p) dst[x] = "T"
}
}
}
}
var print = Fn.new { |model|
System.print("__" * cols)
System.print()
for (r in 1..rows) {
for (c in 1..cols) System.write(" %(model[r*cx+c])")
System.print()
}
}
var odd = List.filled(rx*cx, " ")
var even = List.filled(rx*cx, " ")
for (r in 1 ..rows) {
for (c in 1..cols) {
if (rand.int(2) == 1) odd[r*cx+c] = "T"
}
}
while (true) {
print.call(odd)
step.call(even, odd)
Stdin.readLine()
print.call(even)
step.call(odd, even)
Stdin.readLine()
}
You may also check:How to resolve the algorithm Peano curve step by step in the Ruby programming language
You may also check:How to resolve the algorithm GUI component interaction step by step in the Common Lisp programming language
You may also check:How to resolve the algorithm Unbias a random generator step by step in the Aime programming language
You may also check:How to resolve the algorithm Pernicious numbers step by step in the Java programming language
You may also check:How to resolve the algorithm Fivenum step by step in the Julia programming language