How to resolve the algorithm Galton box animation step by step in the Prolog programming language
How to resolve the algorithm Galton box animation step by step in the Prolog programming language
Table of Contents
Problem Statement
A Galton device Sir Francis Galton's device is also known as a bean machine, a Galton Board, or a quincunx.
In a Galton box, there are a set of pins arranged in a triangular pattern. A number of balls are dropped so that they fall in line with the top pin, deflecting to the left or the right of the pin. The ball continues to fall to the left or right of lower pins before arriving at one of the collection points between and to the sides of the bottom row of pins. Eventually the balls are collected into bins at the bottom (as shown in the image), the ball column heights in the bins approximate a bell curve. Overlaying Pascal's triangle onto the pins shows the number of different paths that can be taken to get to each bin.
Generate an animated simulation of a Galton device.
Let's start with the solution:
Step by Step solution about How to resolve the algorithm Galton box animation step by step in the Prolog programming language
Source code in the prolog programming language
:- dynamic tubes/1.
:- dynamic balls/2.
:- dynamic stop/1.
% number of rows of pins (0 -> 9)
row(9).
galton_box :-
retractall(tubes(_)),
retractall(balls(_,_)),
retractall(stop(_)),
assert(stop(@off)),
new(D, window('Galton Box')),
send(D, size, size(520,700)),
display_pins(D),
new(ChTubes, chain),
assert(tubes(ChTubes)),
display_tubes(D, ChTubes),
new(Balls, chain),
new(B, ball(D)),
send(Balls, append, B),
assert(balls(Balls, D)),
send(D, done_message, and(message(ChTubes, clear),
message(ChTubes, free),
message(Balls, for_all, message(@arg1, free)),
message(Balls, clear),
message(Balls, free),
message(@receiver, destroy))),
send(D, open).
% class pin, balls travel between pins
:- pce_begin_class(pin, circle, "pin").
initialise(P, Pos) :->
send(P, send_super, initialise, 18),
send(P, fill_pattern, new(_, colour(@default, 0, 0, 0))),
get(Pos, x, X),
get(Pos, y, Y),
send(P, geometry, x := X, y := Y).
:- pce_end_class.
% class tube, balls fall in them
:- pce_begin_class(tube, path, "tube where balls fall").
variable(indice, any, both, "index of the tube in the list").
variable(balls, any, both, "number of balls inside").
initialise(P, Ind, D) :->
row(Row),
send(P, send_super, initialise, kind := poly),
send(P, slot, balls, 0),
send(P, slot, indice, Ind),
X0 is 228 - Row * 20 + Ind * 40,
X1 is X0 + 20,
Y1 is 600, Y0 is 350,
send_list(P, append, [point(X0, Y0), point(X0, Y1),
point(X1,Y1), point(X1,Y0)]),
send(D, display, P).
% animation stop when a tube is full
add_ball(P) :->
get(P, slot, balls, B),
B1 is B+1,
send(P, slot, balls, B1),
( B1 = 12
-> retract(stop(_)), assert(stop(@on))
; true).
:- pce_end_class.
% class ball
:- pce_begin_class(ball, circle, "ball").
variable(angle, any, both, "angle of the ball with the pin").
variable(dir, any, both, "left / right").
variable(pin, point, both, "pin under the ball when it falls").
variable(position, point, both, "position of the ball").
variable(max_descent, any, both, "max descent").
variable(state, any, both, "in_pins / in_tube").
variable(window, any, both, "window to display").
variable(mytimer, timer, both, "timer of the animation").
initialise(P, W) :->
send(P, send_super, initialise, 18),
send(P, pen, 0),
send(P, state, in_pins),
send(P, fill_pattern, new(_, colour(@default, 65535, 0, 0))),
Ang is 3 * pi / 2,
send(P, slot, angle, Ang),
send(P, slot, window, W),
send(P, geometry, x := 250, y := 30),
send(P, pin, point(250, 50)),
send(P, choose_dir),
send(P, mytimer, new(_, timer(0.005, message(P, move_ball)))),
send(W, display, P),
send(P?mytimer, start).
% method called when the object is destroyed
% first the timer is stopped
% then all the resources are freed
unlink(P) :->
send(P?mytimer, stop),
send(P, send_super, unlink).
choose_dir(P) :->
I is random(2),
( I = 1 -> Dir = left; Dir = right),
send(P, dir, Dir).
move_ball(P) :->
get(P, state, State),
( State = in_pins
-> send(P, move_ball_in_pins)
; send(P, move_ball_in_tube)).
move_ball_in_pins(P) :->
get(P, slot, angle, Ang),
get(P, slot, pin, Pin),
get(P, slot, dir, Dir),
( Dir = left -> Ang1 is Ang-0.15 ; Ang1 is Ang + 0.15),
get(Pin, x, PX),
get(Pin, y, PY),
X is 21 * cos(Ang1) + PX,
Y is 21 * sin(Ang1) + PY,
send(P, geometry, x := X, y := Y),
send(P?window, display, P),
( abs(Ang1 - pi) < 0.1
-> PX1 is PX - 20,
send(P, next_move, PX1, PY)
; abs(Ang1 - 2 * pi) < 0.1
-> PX1 is PX + 20,
send(P, next_move, PX1, PY)
; send(P, slot, angle, Ang1)).
next_move(P, PX, PY) :->
row(Row),
Ang2 is 3 * pi / 2,
PY1 is PY + 30,
( PY1 =:= (Row + 1) * 30 + 50
-> send(P, slot, state, in_tube),
NumTube is round((PX - 228 + Row * 20) / 40),
tubes(ChTubes),
get(ChTubes, find,
message(@prolog, same_value,@arg1?indice, NumTube),
Tube),
send(Tube, add_ball),
get(Tube, slot, balls, Balls),
Max_descent is 600 - Balls * 20,
send(P, slot, max_descent, Max_descent),
send(P, slot, position, point(PX, PY))
; send(P, choose_dir),
send(P, slot, angle, Ang2),
send(P, slot, pin, point(PX, PY1))).
move_ball_in_tube(P) :->
get(P, slot, position, Descente),
get(Descente, x, PX1),
get(Descente, y, PY),
PY1 is PY+4,
send(P, geometry, x := PX1, y := PY1),
get(P, slot, max_descent, Max_descent),
( Max_descent =< PY1
-> send(P?mytimer, stop),
( stop(@off) -> send(@prolog, next_ball); true)
; send(P, slot, position, point(PX1, PY1))),
send(P?window, display, P).
:- pce_end_class.
next_ball :-
retract(balls(Balls, D)),
new(B, ball(D)),
send(Balls, append, B),
assert(balls(Balls, D)).
% test to find the appropriate tube
same_value(V, V).
display_pins(D) :-
row(Row),
forall(between(0, Row, I),
( Start is 250 - I * 20,
Y is I * 30 + 50,
forall(between(0, I, J),
( X is Start + J * 40,
new(P, pin(point(X,Y))),
send(D, display, P))))).
display_tubes(D, Ch) :-
row(Row),
Row1 is Row+1,
forall(between(0, Row1, I),
( new(T, tube(I, D)),
send(Ch, append, T),
send(D, display, T))).
You may also check:How to resolve the algorithm Roman numerals/Decode step by step in the Quackery programming language
You may also check:How to resolve the algorithm Pentagram step by step in the Quackery programming language
You may also check:How to resolve the algorithm URL decoding step by step in the Arturo programming language
You may also check:How to resolve the algorithm Determine if a string is collapsible step by step in the REXX programming language
You may also check:How to resolve the algorithm Twin primes step by step in the Visual Basic programming language