How to resolve the algorithm Knight's tour step by step in the Ada programming language
How to resolve the algorithm Knight's tour step by step in the Ada programming language
Table of Contents
Problem Statement
Problem: you have a standard 8x8 chessboard, empty but for a single knight on some square. Your task is to emit a series of legal knight moves that result in the knight visiting every square on the chessboard exactly once. Note that it is not a requirement that the tour be "closed"; that is, the knight need not end within a single move of its start position. Input and output may be textual or graphical, according to the conventions of the programming environment. If textual, squares should be indicated in algebraic notation. The output should indicate the order in which the knight visits the squares, starting with the initial position. The form of the output may be a diagram of the board with the squares numbered according to visitation sequence, or a textual list of algebraic coordinates in order, or even an actual animation of the knight moving around the chessboard. Input: starting square Output: move sequence
Let's start with the solution:
Step by Step solution about How to resolve the algorithm Knight's tour step by step in the Ada programming language
Source code in the ada programming language
generic
Size: Integer;
package Knights_Tour is
subtype Index is Integer range 1 .. Size;
type Tour is array (Index, Index) of Natural;
Empty: Tour := (others => (others => 0));
function Get_Tour(Start_X, Start_Y: Index; Scene: Tour := Empty) return Tour;
-- finds tour via backtracking
-- either no tour has been found, i.e., Get_Tour returns Scene
-- or the Result(X,Y)=K if and only if I,J is visited at the K-th move
-- for all X, Y, Scene(X,Y) must be either 0 or Natural'Last,
-- where Scene(X,Y)=Natural'Last means "don't visit coordiates (X,Y)!"
function Count_Moves(Board: Tour) return Natural;
-- counts the number of possible moves, i.e., the number of 0's on the board
procedure Tour_IO(The_Tour: Tour; Width: Natural := 4);
-- writes The_Tour to the output using Ada.Text_IO;
end Knights_Tour;
with Ada.Text_IO, Ada.Integer_Text_IO;
package body Knights_Tour is
type Pair is array(1..2) of Integer;
type Pair_Array is array (Positive range <>) of Pair;
Pairs: constant Pair_Array (1..8)
:= ((-2,1),(-1,2),(1,2),(2,1),(2,-1),(1,-2),(-1,-2),(-2,-1));
-- places for the night to go (relative to the current position)
function Count_Moves(Board: Tour) return Natural is
N: Natural := 0;
begin
for I in Index loop
for J in Index loop
if Board(I,J) < Natural'Last then
N := N + 1;
end if;
end loop;
end loop;
return N;
end Count_Moves;
function Get_Tour(Start_X, Start_Y: Index; Scene: Tour := Empty)
return Tour is
Done: Boolean;
Move_Count: Natural := Count_Moves(Scene);
Visited: Tour;
-- Visited(I, J) = 0: not yet visited
-- Visited(I, J) = K: visited at the k-th move
-- Visited(I, J) = Integer'Last: never visit
procedure Visit(X, Y: Index; Move_Number: Positive; Found: out Boolean) is
XX, YY: Integer;
begin
Found := False;
Visited(X, Y) := Move_Number;
if Move_Number = Move_Count then
Found := True;
else
for P in Pairs'Range loop
XX := X + Pairs(P)(1);
YY := Y + Pairs(P)(2);
if (XX in Index) and then (YY in Index)
and then Visited(XX, YY) = 0 then
Visit(XX, YY, Move_Number+1, Found); -- recursion
if Found then
return; -- no need to search further
end if;
end if;
end loop;
Visited(X, Y) := 0; -- undo previous mark
end if;
end Visit;
begin
Visited := Scene;
Visit(Start_X, Start_Y, 1, Done);
if not Done then
Visited := Scene;
end if;
return Visited;
end Get_Tour;
procedure Tour_IO(The_Tour: Tour; Width: Natural := 4) is
begin
for I in Index loop
for J in Index loop
if The_Tour(I, J) < Integer'Last then
Ada.Integer_Text_IO.Put(The_Tour(I, J), Width);
else
for W in 1 .. Width-1 loop
Ada.Text_IO.Put(" ");
end loop;
Ada.Text_IO.Put("-"); -- deliberately not visited
end if;
end loop;
Ada.Text_IO.New_Line;
end loop;
end Tour_IO;
end Knights_Tour;
with Knights_Tour, Ada.Command_Line;
procedure Test_Knight is
Size: Positive := Positive'Value(Ada.Command_Line.Argument(1));
package KT is new Knights_Tour(Size => Size);
begin
KT.Tour_IO(KT.Get_Tour(1, 1));
end Test_Knight;
function Warnsdorff_Get_Tour(Start_X, Start_Y: Index; Scene: Tour := Empty)
return Tour;
-- uses Warnsdorff heurisitic to find a tour faster
-- same interface as Get_Tour
function Warnsdorff_Get_Tour(Start_X, Start_Y: Index; Scene: Tour := Empty)
return Tour is
Done: Boolean;
Visited: Tour; -- see comments from Get_Tour above
Move_Count: Natural := Count_Moves(Scene);
function Neighbors(X, Y: Index) return Natural is
Result: Natural := 0;
begin
for P in Pairs'Range loop
if X+Pairs(P)(1) in Index and then Y+Pairs(P)(2) in Index and then
Visited(X+Pairs(P)(1), Y+Pairs(P)(2)) = 0 then
Result := Result + 1;
end if;
end loop;
return Result;
end Neighbors;
procedure Sort(Options: in out Pair_Array) is
N_Bors: array(Options'Range) of Natural;
K: Positive range Options'Range;
N: Natural;
P: Pair;
begin
for Opt in Options'Range loop
N_Bors(Opt) := Neighbors(Options(Opt)(1), Options(Opt)(2));
end loop;
for Opt in Options'Range loop
K := Opt;
for Alternative in Opt+1 .. Options'Last loop
if N_Bors(Alternative) < N_Bors(Opt) then
K := Alternative;
end if;
end loop;
N := N_Bors(Opt);
N_Bors(Opt) := N_Bors(K);
N_Bors(K) := N;
P := Options(Opt);
Options(Opt) := Options(K);
Options(K) := P;
end loop;
end Sort;
procedure Visit(X, Y: Index; Move: Positive; Found: out Boolean) is
Next_Count: Natural range 0 .. 8 := 0;
Next_Steps: Pair_Array(1 .. 8);
XX, YY: Integer;
begin
Found := False;
Visited(X, Y) := Move;
if Move = Move_Count then
Found := True;
else
-- consider all possible places to go
for P in Pairs'Range loop
XX := X + Pairs(P)(1);
YY := Y + Pairs(P)(2);
if (XX in Index) and then (YY in Index)
and then Visited(XX, YY) = 0 then
Next_Count := Next_Count+1;
Next_Steps(Next_Count) := (XX, YY);
end if;
end loop;
Sort(Next_Steps(1 .. Next_Count));
for N in 1 .. Next_Count loop
Visit(Next_Steps(N)(1), Next_Steps(N)(2), Move+1, Found);
if Found then
return; -- no need to search further
end if;
end loop;
-- if we didn't return above, we have to undo our move
Visited(X, Y) := 0;
end if;
end Visit;
begin
Visited := Scene;
Visit(Start_X, Start_Y, 1, Done);
if not Done then
Visited := Scene;
end if;
return Visited;
end Warnsdorff_Get_Tour;
with Knights_Tour, Ada.Command_Line;
procedure Test_Fast is
Size: Positive := Positive'Value(Ada.Command_Line.Argument(1));
package KT is new Knights_Tour(Size => Size);
begin
KT.Tour_IO(KT.Warnsdorff_Get_Tour(1, 1));
end Test_Fast;
You may also check:How to resolve the algorithm Minesweeper game step by step in the Go programming language
You may also check:How to resolve the algorithm Call an object method step by step in the Kotlin programming language
You may also check:How to resolve the algorithm Compare a list of strings step by step in the FutureBasic programming language
You may also check:How to resolve the algorithm Copy stdin to stdout step by step in the Racket programming language
You may also check:How to resolve the algorithm Stair-climbing puzzle step by step in the Pascal programming language