How to resolve the algorithm Loops/Increment loop index within loop body step by step in the AArch64 Assembly programming language
Published on 12 May 2024 09:40 PM
How to resolve the algorithm Loops/Increment loop index within loop body step by step in the AArch64 Assembly programming language
Table of Contents
Problem Statement
Sometimes, one may need (or want) a loop which its iterator (the index variable) is modified within the loop body in addition to the normal incrementation by the (do) loop structure index.
Demonstrate the best way to accomplish this.
Write a loop which:
Extra credit: because of the primes get rather large, use commas within the displayed primes to ease comprehension.
Show all output here.
Not all programming languages allow the modification of a loop's index. If that is the case, then use whatever method that is appropriate or idiomatic for that language. Please add a note if the loop's index isn't modifiable.
Let's start with the solution:
Step by Step solution about How to resolve the algorithm Loops/Increment loop index within loop body step by step in the AArch64 Assembly programming language
Source code in the aarch64 programming language
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program loopinc64.s */
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessOverflow: .asciz "Error: overflow !!!!"
sMessResult: .asciz "Index : @ Value : @ \n"
szCarriageReturn: .asciz "\n"
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
sZoneConv: .skip 24
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: // entry of program
mov x20,0 // counter
mov x21,42 // start index
1: // begin loop
mov x0,x21
bl isPrime // prime ?
bcs 100f // error overflow ?
cbnz x0,2f // is prime ?
add x21,x21,1 // no -> increment index
b 1b // and loop
2: // display index and prime
add x20,x20,1 // increment counter
mov x0,x20
ldr x1,qAdrsZoneConv // conversion index
bl conversion10
ldr x0,qAdrsMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at first @ character
mov x10,x0
mov x0,x21 // conversion value
ldr x1,qAdrsZoneConv
bl conversion10 // decimal conversion ascii
mov x0,x10
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at second @ character
bl affichageMess
add x21,x21,x21
cmp x20,42 // end ?
blt 1b // no loop
100: // standard end of the program
mov x0,0 // return code
mov x8,EXIT // request to exit program
svc 0 // perform the system call
qAdrsZoneConv: .quad sZoneConv
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrsMessResult: .quad sMessResult
/***************************************************/
/* Verification si un nombre est premier */
/***************************************************/
/* x0 contient le nombre à verifier */
/* x0 retourne 1 si premier 0 sinon */
isPrime:
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
mov x2,x0
sub x1,x0,#1
cmp x2,0
beq 99f // retourne zéro
cmp x2,2 // pour 1 et 2 retourne 1
ble 2f
mov x0,#2
bl moduloPuR64
bcs 100f // erreur overflow
cmp x0,#1
bne 99f // Pas premier
cmp x2,3
beq 2f
mov x0,#3
bl moduloPuR64
blt 100f // erreur overflow
cmp x0,#1
bne 99f
cmp x2,5
beq 2f
mov x0,#5
bl moduloPuR64
bcs 100f // erreur overflow
cmp x0,#1
bne 99f // Pas premier
cmp x2,7
beq 2f
mov x0,#7
bl moduloPuR64
bcs 100f // erreur overflow
cmp x0,#1
bne 99f // Pas premier
cmp x2,11
beq 2f
mov x0,#11
bl moduloPuR64
bcs 100f // erreur overflow
cmp x0,#1
bne 99f // Pas premier
cmp x2,13
beq 2f
mov x0,#13
bl moduloPuR64
bcs 100f // erreur overflow
cmp x0,#1
bne 99f // Pas premier
2:
cmn x0,0 // carry à zero pas d'erreur
mov x0,1 // premier
b 100f
99:
cmn x0,0 // carry à zero pas d'erreur
mov x0,#0 // Pas premier
100:
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret // retour adresse lr x30
/********************************************************/
/* Calcul modulo de b puissance e modulo m */
/* Exemple 4 puissance 13 modulo 497 = 445 */
/********************************************************/
/* x0 nombre */
/* x1 exposant */
/* x2 modulo */
moduloPuR64:
stp x1,lr,[sp,-16]! // save registres
stp x3,x4,[sp,-16]! // save registres
stp x5,x6,[sp,-16]! // save registres
stp x7,x8,[sp,-16]! // save registres
stp x9,x10,[sp,-16]! // save registres
cbz x0,100f
cbz x1,100f
mov x8,x0
mov x7,x1
mov x6,1 // resultat
udiv x4,x8,x2
msub x9,x4,x2,x8 // contient le reste
1:
tst x7,1
beq 2f
mul x4,x9,x6
umulh x5,x9,x6
mov x6,x4
mov x0,x6
mov x1,x5
bl divisionReg128U
cbnz x1,99f // overflow
mov x6,x3
2:
mul x8,x9,x9
umulh x5,x9,x9
//cbnz x5,99f
mov x0,x8
mov x1,x5
bl divisionReg128U
cbnz x1,99f // overflow
mov x9,x3
lsr x7,x7,1
cbnz x7,1b
mov x0,x6 // result
cmn x0,0 // carry à zero pas d'erreur
b 100f
99:
ldr x0,qAdrszMessOverflow
bl affichageMess
cmp x0,0 // carry à un car erreur
mov x0,-1 // code erreur
100:
ldp x9,x10,[sp],16 // restaur des 2 registres
ldp x7,x8,[sp],16 // restaur des 2 registres
ldp x5,x6,[sp],16 // restaur des 2 registres
ldp x3,x4,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret // retour adresse lr x30
qAdrszMessOverflow: .quad szMessOverflow
/***************************************************/
/* division d un nombre de 128 bits par un nombre de 64 bits */
/***************************************************/
/* x0 contient partie basse dividende */
/* x1 contient partie haute dividente */
/* x2 contient le diviseur */
/* x0 retourne partie basse quotient */
/* x1 retourne partie haute quotient */
/* x3 retourne le reste */
divisionReg128U:
stp x6,lr,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
mov x5,#0 // raz du reste R
mov x3,#128 // compteur de boucle
mov x4,#0 // dernier bit
1:
lsl x5,x5,#1 // on decale le reste de 1
tst x1,1<<63 // test du bit le plus à gauche
lsl x1,x1,#1 // on decale la partie haute du quotient de 1
beq 2f
orr x5,x5,#1 // et on le pousse dans le reste R
2:
tst x0,1<<63
lsl x0,x0,#1 // puis on decale la partie basse
beq 3f
orr x1,x1,#1 // et on pousse le bit de gauche dans la partie haute
3:
orr x0,x0,x4 // position du dernier bit du quotient
mov x4,#0 // raz du bit
cmp x5,x2
blt 4f
sub x5,x5,x2 // on enleve le diviseur du reste
mov x4,#1 // dernier bit à 1
4:
// et boucle
subs x3,x3,#1
bgt 1b
lsl x1,x1,#1 // on decale le quotient de 1
tst x0,1<<63
lsl x0,x0,#1 // puis on decale la partie basse
beq 5f
orr x1,x1,#1
5:
orr x0,x0,x4 // position du dernier bit du quotient
mov x3,x5
100:
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x6,lr,[sp],16 // restaur des 2 registres
ret // retour adresse lr x30
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
You may also check:How to resolve the algorithm Statistics/Basic step by step in the C++ programming language
You may also check:How to resolve the algorithm Search a list step by step in the Lang5 programming language
You may also check:How to resolve the algorithm Halt and catch fire step by step in the jq programming language
You may also check:How to resolve the algorithm Averages/Median step by step in the AArch64 Assembly programming language
You may also check:How to resolve the algorithm Secure temporary file step by step in the NetRexx programming language