How to resolve the algorithm MD5/Implementation step by step in the Groovy programming language

Published on 12 May 2024 09:40 PM

How to resolve the algorithm MD5/Implementation step by step in the Groovy programming language

Table of Contents

Problem Statement

The purpose of this task to code and validate an implementation of the MD5 Message Digest Algorithm by coding the algorithm directly (not using a call to a built-in or external hashing library). For details of the algorithm refer to MD5 on Wikipedia or the MD5 definition in IETF RFC (1321).

The solutions shown here will provide practical illustrations of bit manipulation, unsigned integers, working with little-endian data. Additionally, the task requires an attention to details such as boundary conditions since being out by even 1 bit will produce dramatically different results. Subtle implementation bugs can result in some hashes being correct while others are wrong. Not only is it critical to get the individual sub functions working correctly, even small errors in padding, endianness, or data layout will result in failure. In addition, intermediate outputs to aid in developing an implementation can be found here. The MD5 Message-Digest Algorithm was developed by RSA Data Security, Inc. in 1991.

Let's start with the solution:

Step by Step solution about How to resolve the algorithm MD5/Implementation step by step in the Groovy programming language

Source code in the groovy programming language

class MD5 {

    private static final int INIT_A = 0x67452301
    private static final int INIT_B = (int)0xEFCDAB89L
    private static final int INIT_C = (int)0x98BADCFEL
    private static final int INIT_D = 0x10325476

    private static final int[] SHIFT_AMTS = [
            7, 12, 17, 22,
            5,  9, 14, 20,
            4, 11, 16, 23,
            6, 10, 15, 21
    ]

    private static final int[] TABLE_T = new int[64]
    static
    {
        for (int i in 0..63)
            TABLE_T[i] = (int)(long)((1L << 32) * Math.abs(Math.sin(i + 1)))
    }

    static byte[] computeMD5(byte[] message)
    {
        int messageLenBytes = message.length
        int numBlocks = ((messageLenBytes + 8) >>> 6) + 1
        int totalLen = numBlocks << 6
        byte[] paddingBytes = new byte[totalLen - messageLenBytes]
        paddingBytes[0] = (byte)0x80

        long messageLenBits = (long)messageLenBytes << 3
        for (int i in 0..7)
        {
            paddingBytes[paddingBytes.length - 8 + i] = (byte)messageLenBits
            messageLenBits >>>= 8
        }

        int a = INIT_A
        int b = INIT_B
        int c = INIT_C
        int d = INIT_D
        int[] buffer = new int[16]
        for (int i in 0..(numBlocks - 1))
        {
            int index = i << 6
            for (int j in 0..63) {
                buffer[j >>> 2] = ((int) ((index < messageLenBytes) ? message[index] : paddingBytes[index - messageLenBytes]) << 24) | (buffer[j >>> 2] >>> 8)
                index++
            }
            int originalA = a
            int originalB = b
            int originalC = c
            int originalD = d
            for (int j in 0..63)
            {
                int div16 = j >>> 4
                int f = 0
                int bufferIndex = j
                switch (div16)
                {
                    case 0:
                        f = (b & c) | (~b & d)
                        break

                    case 1:
                        f = (b & d) | (c & ~d)
                        bufferIndex = (bufferIndex * 5 + 1) & 0x0F
                        break

                    case 2:
                        f = b ^ c ^ d
                        bufferIndex = (bufferIndex * 3 + 5) & 0x0F
                        break

                    case 3:
                        f = c ^ (b | ~d)
                        bufferIndex = (bufferIndex * 7) & 0x0F
                        break
                }
                int temp = b + Integer.rotateLeft(a + f + buffer[bufferIndex] + TABLE_T[j], SHIFT_AMTS[(div16 << 2) | (j & 3)])
                a = d
                d = c
                c = b
                b = temp
            }

            a += originalA
            b += originalB
            c += originalC
            d += originalD
        }

        byte[] md5 = new byte[16]
        int count = 0
        for (int i in 0..3)
        {
            int n = (i == 0) ? a : ((i == 1) ? b : ((i == 2) ? c : d))
            for (int j in 0..3)
            {
                md5[count++] = (byte)n
                n >>>= 8
            }
        }
        return md5
    }

    static String toHexString(byte[] b)
    {
        StringBuilder sb = new StringBuilder()
        for (int i in 0..(b.length - 1))
        {
            sb.append(String.format("%02X", b[i] & 0xFF))
        }
        return sb.toString()
    }

    static void main(String[] args)
    {
        String[] testStrings = ["", "a", "abc", "message digest", "abcdefghijklmnopqrstuvwxyz",
                                "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
                                "12345678901234567890123456789012345678901234567890123456789012345678901234567890" ]
        for (String s : testStrings)
            System.out.println("0x" + toHexString(computeMD5(s.getBytes())) + " <== \"" + s + "\"")
    }

}


  

You may also check:How to resolve the algorithm Count in octal step by step in the Quackery programming language
You may also check:How to resolve the algorithm Take notes on the command line step by step in the J programming language
You may also check:How to resolve the algorithm Multi-dimensional array step by step in the Java programming language
You may also check:How to resolve the algorithm Greyscale bars/Display step by step in the Mathematica / Wolfram Language programming language
You may also check:How to resolve the algorithm Sleep step by step in the FBSL programming language