How to resolve the algorithm Priority queue step by step in the Fortran programming language
How to resolve the algorithm Priority queue step by step in the Fortran programming language
Table of Contents
Problem Statement
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order.
Create a priority queue. The queue must support at least two operations:
Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc.
To test your implementation, insert a number of elements into the queue, each with some random priority. Then dequeue them sequentially; now the elements should be sorted by priority. You can use the following task/priority items as input data:
The implementation should try to be efficient. A typical implementation has O(log n) insertion and extraction time, where n is the number of items in the queue.
You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc. If so, discuss the reasons behind it.
Let's start with the solution:
Step by Step solution about How to resolve the algorithm Priority queue step by step in the Fortran programming language
Source code in the fortran programming language
module priority_queue_mod
implicit none
type node
character (len=100) :: task
integer :: priority
end type
type queue
type(node), allocatable :: buf(:)
integer :: n = 0
contains
procedure :: top
procedure :: enqueue
procedure :: siftdown
end type
contains
subroutine siftdown(this, a)
class (queue) :: this
integer :: a, parent, child
associate (x => this%buf)
parent = a
do while(parent*2 <= this%n)
child = parent*2
if (child + 1 <= this%n) then
if (x(child+1)%priority > x(child)%priority ) then
child = child +1
end if
end if
if (x(parent)%priority < x(child)%priority) then
x([child, parent]) = x([parent, child])
parent = child
else
exit
end if
end do
end associate
end subroutine
function top(this) result (res)
class(queue) :: this
type(node) :: res
res = this%buf(1)
this%buf(1) = this%buf(this%n)
this%n = this%n - 1
call this%siftdown(1)
end function
subroutine enqueue(this, priority, task)
class(queue), intent(inout) :: this
integer :: priority
character(len=*) :: task
type(node) :: x
type(node), allocatable :: tmp(:)
integer :: i
x%priority = priority
x%task = task
this%n = this%n +1
if (.not.allocated(this%buf)) allocate(this%buf(1))
if (size(this%buf)<this%n) then
allocate(tmp(2*size(this%buf)))
tmp(1:this%n-1) = this%buf
call move_alloc(tmp, this%buf)
end if
this%buf(this%n) = x
i = this%n
do
i = i / 2
if (i==0) exit
call this%siftdown(i)
end do
end subroutine
end module
program main
use priority_queue_mod
type (queue) :: q
type (node) :: x
call q%enqueue(3, "Clear drains")
call q%enqueue(4, "Feed cat")
call q%enqueue(5, "Make Tea")
call q%enqueue(1, "Solve RC tasks")
call q%enqueue(2, "Tax return")
do while (q%n >0)
x = q%top()
print "(g0,a,a)", x%priority, " -> ", trim(x%task)
end do
end program
! Output:
! 5 -> Make Tea
! 4 -> Feed cat
! 3 -> Clear drains
! 2 -> Tax return
! 1 -> Solve RC tasks
You may also check:How to resolve the algorithm Function frequency step by step in the Forth programming language
You may also check:How to resolve the algorithm Pernicious numbers step by step in the F# programming language
You may also check:How to resolve the algorithm Numerical integration step by step in the MATLAB / Octave programming language
You may also check:How to resolve the algorithm Keyboard input/Obtain a Y or N response step by step in the GW-BASIC programming language
You may also check:How to resolve the algorithm Draw a cuboid step by step in the Scala programming language