How to resolve the algorithm QR decomposition step by step in the Maple programming language
How to resolve the algorithm QR decomposition step by step in the Maple programming language
Table of Contents
Problem Statement
Any rectangular
m × n
{\displaystyle m\times n}
matrix
A
{\displaystyle {\mathit {A}}}
can be decomposed to a product of an orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
and an upper (right) triangular matrix
R
{\displaystyle {\mathit {R}}}
, as described in QR decomposition. Task Demonstrate the QR decomposition on the example matrix from the Wikipedia article: and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used: Method Multiplying a given vector
a
{\displaystyle {\mathit {a}}}
, for example the first column of matrix
A
{\displaystyle {\mathit {A}}}
, with the Householder matrix
H
{\displaystyle {\mathit {H}}}
, which is given as reflects
a
{\displaystyle {\mathit {a}}}
about a plane given by its normal vector
u
{\displaystyle {\mathit {u}}}
. When the normal vector of the plane
u
{\displaystyle {\mathit {u}}}
is given as then the transformation reflects
a
{\displaystyle {\mathit {a}}}
onto the first standard basis vector which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of
a
1
{\displaystyle a_{1}}
: and normalize with respect to the first element: The equation for
H
{\displaystyle H}
thus becomes: or, in another form with Applying
H
{\displaystyle {\mathit {H}}}
on
a
{\displaystyle {\mathit {a}}}
then gives and applying
H
{\displaystyle {\mathit {H}}}
on the matrix
A
{\displaystyle {\mathit {A}}}
zeroes all subdiagonal elements of the first column: In the second step, the second column of
A
{\displaystyle {\mathit {A}}}
, we want to zero all elements but the first two, which means that we have to calculate
H
{\displaystyle {\mathit {H}}}
with the first column of the submatrix (denoted *), not on the whole second column of
A
{\displaystyle {\mathit {A}}}
. To get
H
2
{\displaystyle H_{2}}
, we then embed the new
H
{\displaystyle {\mathit {H}}}
into an
m × n
{\displaystyle m\times n}
identity: This is how we can, column by column, remove all subdiagonal elements of
A
{\displaystyle {\mathit {A}}}
and thus transform it into
R
{\displaystyle {\mathit {R}}}
. The product of all the Householder matrices
H
{\displaystyle {\mathit {H}}}
, for every column, in reverse order, will then yield the orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
. The QR decomposition should then be used to solve linear least squares (Multiple regression) problems
A
x
b
{\displaystyle {\mathit {A}}x=b}
by solving When
R
{\displaystyle {\mathit {R}}}
is not square, i.e.
m
n
{\displaystyle m>n}
we have to cut off the
m
− n
{\displaystyle {\mathit {m}}-n}
zero padded bottom rows. and the same for the RHS: Finally, solve the square upper triangular system by back substitution:
Let's start with the solution:
Step by Step solution about How to resolve the algorithm QR decomposition step by step in the Maple programming language
Source code in the maple programming language
with(LinearAlgebra):
A:=<12,-51,4;6,167,-68;-4,24,-41>:
Q,R:=QRDecomposition(A):
Q;
R;
You may also check:How to resolve the algorithm Cumulative standard deviation step by step in the Ada programming language
You may also check:How to resolve the algorithm Feigenbaum constant calculation step by step in the Sidef programming language
You may also check:How to resolve the algorithm Tau function step by step in the RPL programming language
You may also check:How to resolve the algorithm Commatizing numbers step by step in the Python programming language
You may also check:How to resolve the algorithm Erdős-Nicolas numbers step by step in the FutureBasic programming language