How to resolve the algorithm Quaternion type step by step in the Prolog programming language
How to resolve the algorithm Quaternion type step by step in the Prolog programming language
Table of Contents
Problem Statement
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part, sometimes written as a + bi,
where a and b stand for real numbers, and i stands for the square root of minus 1.
An example of a complex number might be -3 + 2i,
where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k.
A quaternion might be written as a + bi + cj + dk.
In the quaternion numbering system:
The order of multiplication is important, as, in general, for two quaternions:
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position.
So the example above would be written as (1, 2, 3, 4)
Given the three quaternions and their components: And a wholly real number r = 7.
Create functions (or classes) to perform simple maths with quaternions including computing:
If a language has built-in support for quaternions, then use it.
Let's start with the solution:
Step by Step solution about How to resolve the algorithm Quaternion type step by step in the Prolog programming language
Source code in the prolog programming language
% A quaternion is represented as a complex term qx/4
add(qx(R0,I0,J0,K0), qx(R1,I1,J1,K1), qx(R,I,J,K)) :-
!, R is R0+R1, I is I0+I1, J is J0+J1, K is K0+K1.
add(qx(R0,I,J,K), F, qx(R,I,J,K)) :-
number(F), !, R is R0 + F.
add(F, qx(R0,I,J,K), Qx) :-
add(qx(R0,I,J,K), F, Qx).
mul(qx(R0,I0,J0,K0), qx(R1,I1,J1,K1), qx(R,I,J,K)) :- !,
R is R0*R1 - I0*I1 - J0*J1 - K0*K1,
I is R0*I1 + I0*R1 + J0*K1 - K0*J1,
J is R0*J1 - I0*K1 + J0*R1 + K0*I1,
K is R0*K1 + I0*J1 - J0*I1 + K0*R1.
mul(qx(R0,I0,J0,K0), F, qx(R,I,J,K)) :-
number(F), !, R is R0*F, I is I0*F, J is J0*F, K is K0*F.
mul(F, qx(R0,I0,J0,K0), Qx) :-
mul(qx(R0,I0,J0,K0),F,Qx).
abs(qx(R,I,J,K), Norm) :-
Norm is sqrt(R*R+I*I+J*J+K*K).
negate(qx(Ri,Ii,Ji,Ki),qx(R,I,J,K)) :-
R is -Ri, I is -Ii, J is -Ji, K is -Ki.
conjugate(qx(R,Ii,Ji,Ki),qx(R,I,J,K)) :-
I is -Ii, J is -Ji, K is -Ki.
data(q, qx(1,2,3,4)).
data(q1, qx(2,3,4,5)).
data(q2, qx(3,4,5,6)).
data(r, 7).
test :- data(Name, qx(A,B,C,D)), abs(qx(A,B,C,D), Norm),
writef('abs(%w) is %w\n', [Name, Norm]), fail.
test :- data(q, Qx), negate(Qx, Nqx),
writef('negate(%w) is %w\n', [q, Nqx]), fail.
test :- data(q, Qx), conjugate(Qx, Nqx),
writef('conjugate(%w) is %w\n', [q, Nqx]), fail.
test :- data(q1, Q1), data(q2, Q2), add(Q1, Q2, Qx),
writef('q1+q2 is %w\n', [Qx]), fail.
test :- data(q1, Q1), data(q2, Q2), add(Q2, Q1, Qx),
writef('q2+q1 is %w\n', [Qx]), fail.
test :- data(q, Qx), data(r, R), mul(Qx, R, Nqx),
writef('q*r is %w\n', [Nqx]), fail.
test :- data(q, Qx), data(r, R), mul(R, Qx, Nqx),
writef('r*q is %w\n', [Nqx]), fail.
test :- data(q1, Q1), data(q2, Q2), mul(Q1, Q2, Qx),
writef('q1*q2 is %w\n', [Qx]), fail.
test :- data(q1, Q1), data(q2, Q2), mul(Q2, Q1, Qx),
writef('q2*q1 is %w\n', [Qx]), fail.
test.
You may also check:How to resolve the algorithm Sleep step by step in the Visual Basic .NET programming language
You may also check:How to resolve the algorithm Non-decimal radices/Input step by step in the AutoHotkey programming language
You may also check:How to resolve the algorithm Non-decimal radices/Output step by step in the PowerShell programming language
You may also check:How to resolve the algorithm Fibonacci n-step number sequences step by step in the Befunge programming language
You may also check:How to resolve the algorithm Greatest common divisor step by step in the Fermat programming language