How to resolve the algorithm Reduced row echelon form step by step in the Ada programming language

Published on 12 May 2024 09:40 PM

How to resolve the algorithm Reduced row echelon form step by step in the Ada programming language

Table of Contents

Problem Statement

Show how to compute the reduced row echelon form (a.k.a. row canonical form) of a matrix. The matrix can be stored in any datatype that is convenient (for most languages, this will probably be a two-dimensional array). Built-in functions or this pseudocode (from Wikipedia) may be used: For testing purposes, the RREF of this matrix: is:

Let's start with the solution:

Step by Step solution about How to resolve the algorithm Reduced row echelon form step by step in the Ada programming language

Source code in the ada programming language

generic
   type Element_Type is private;
   Zero : Element_Type;
   with function "-" (Left, Right : in Element_Type) return Element_Type is <>;
   with function "*" (Left, Right : in Element_Type) return Element_Type is <>;
   with function "/" (Left, Right : in Element_Type) return Element_Type is <>;
package Matrices is
   type Matrix is
     array (Positive range <>, Positive range <>) of Element_Type;
   function Reduced_Row_Echelon_form (Source : Matrix) return Matrix;
end Matrices;


package body Matrices is
   procedure Swap_Rows (From : in out Matrix; First, Second : in Positive) is
      Temporary : Element_Type;
   begin
      for Col in From'Range (2) loop
         Temporary          := From (First, Col);
         From (First, Col)  := From (Second, Col);
         From (Second, Col) := Temporary;
      end loop;
   end Swap_Rows;

   procedure Divide_Row
     (From    : in out Matrix;
      Row     : in Positive;
      Divisor : in Element_Type)
   is
   begin
      for Col in From'Range (2) loop
         From (Row, Col) := From (Row, Col) / Divisor;
      end loop;
   end Divide_Row;

   procedure Subtract_Rows
     (From                : in out Matrix;
      Subtrahend, Minuend : in Positive;
      Factor              : in Element_Type)
   is
   begin
      for Col in From'Range (2) loop
         From (Minuend, Col) := From (Minuend, Col) -
                                From (Subtrahend, Col) * Factor;
      end loop;
   end Subtract_Rows;

   function Reduced_Row_Echelon_form (Source : Matrix) return Matrix is
      Result : Matrix   := Source;
      Lead   : Positive := Result'First (2);
      I      : Positive;
   begin
      Rows : for Row in Result'Range (1) loop
         exit Rows when Lead > Result'Last (2);
         I := Row;
         while Result (I, Lead) = Zero loop
            I := I + 1;
            if I = Result'Last (1) then
               I    := Row;
               Lead := Lead + 1;
               exit Rows when Lead = Result'Last (2);
            end if;
         end loop;
         if I /= Row then
            Swap_Rows (From => Result, First => I, Second => Row);
         end if;
         Divide_Row
           (From    => Result,
            Row     => Row,
            Divisor => Result (Row, Lead));
         for Other_Row in Result'Range (1) loop
            if Other_Row /= Row then
               Subtract_Rows
                 (From       => Result,
                  Subtrahend => Row,
                  Minuend    => Other_Row,
                  Factor     => Result (Other_Row, Lead));
            end if;
         end loop;
         Lead := Lead + 1;
      end loop Rows;
      return Result;
   end Reduced_Row_Echelon_form;
end Matrices;


with Matrices;
with Ada.Text_IO;
procedure Main is
   package Float_IO is new Ada.Text_IO.Float_IO (Float);
   package Float_Matrices is new Matrices (
      Element_Type => Float,
      Zero => 0.0);
   procedure Print_Matrix (Matrix : in Float_Matrices.Matrix) is
   begin
      for Row in Matrix'Range (1) loop
         for Col in Matrix'Range (2) loop
            Float_IO.Put (Matrix (Row, Col), 0, 0, 0);
            Ada.Text_IO.Put (' ');
         end loop;
         Ada.Text_IO.New_Line;
      end loop;
   end Print_Matrix;
   My_Matrix : Float_Matrices.Matrix :=
     ((1.0, 2.0, -1.0, -4.0),
      (2.0, 3.0, -1.0, -11.0),
      (-2.0, 0.0, -3.0, 22.0));
   Reduced   : Float_Matrices.Matrix :=
      Float_Matrices.Reduced_Row_Echelon_form (My_Matrix);
begin
   Print_Matrix (My_Matrix);
   Ada.Text_IO.Put_Line ("reduced to:");
   Print_Matrix (Reduced);
end Main;


  

You may also check:How to resolve the algorithm Soundex step by step in the Ada programming language
You may also check:How to resolve the algorithm Soloway's recurring rainfall step by step in the FreeBASIC programming language
You may also check:How to resolve the algorithm Apply a callback to an array step by step in the Lambdatalk programming language
You may also check:How to resolve the algorithm Mian-Chowla sequence step by step in the Haskell programming language
You may also check:How to resolve the algorithm Respond to an unknown method call step by step in the Python programming language