How to resolve the algorithm Roots of a quadratic function step by step in the GAP programming language
How to resolve the algorithm Roots of a quadratic function step by step in the GAP programming language
Table of Contents
Problem Statement
Write a program to find the roots of a quadratic equation, i.e., solve the equation
a
x
2
b x + c
0
{\displaystyle ax^{2}+bx+c=0}
. Your program must correctly handle non-real roots, but it need not check that
a ≠ 0
{\displaystyle a\neq 0}
. The problem of solving a quadratic equation is a good example of how dangerous it can be to ignore the peculiarities of floating-point arithmetic. The obvious way to implement the quadratic formula suffers catastrophic loss of accuracy when one of the roots to be found is much closer to 0 than the other. In their classic textbook on numeric methods Computer Methods for Mathematical Computations, George Forsythe, Michael Malcolm, and Cleve Moler suggest trying the naive algorithm with
a
1
{\displaystyle a=1}
,
b
−
10
5
{\displaystyle b=-10^{5}}
, and
c
1
{\displaystyle c=1}
. (For double-precision floats, set
b
−
10
9
{\displaystyle b=-10^{9}}
.) Consider the following implementation in Ada: As we can see, the second root has lost all significant figures. The right answer is that X2 is about
10
− 6
{\displaystyle 10^{-6}}
. The naive method is numerically unstable. Suggested by Middlebrook (D-OA), a better numerical method: to define two parameters
q
a c
/
b
{\displaystyle q={\sqrt {ac}}/b}
and
f
1
/
2 +
1 − 4
q
2
/
2
{\displaystyle f=1/2+{\sqrt {1-4q^{2}}}/2}
and the two roots of the quardratic are:
− b
a
f
{\displaystyle {\frac {-b}{a}}f}
and
− c
b f
{\displaystyle {\frac {-c}{bf}}}
Task: do it better. This means that given
a
1
{\displaystyle a=1}
,
b
−
10
9
{\displaystyle b=-10^{9}}
, and
c
1
{\displaystyle c=1}
, both of the roots your program returns should be greater than
10
− 11
{\displaystyle 10^{-11}}
. Or, if your language can't do floating-point arithmetic any more precisely than single precision, your program should be able to handle
b
−
10
6
{\displaystyle b=-10^{6}}
. Either way, show what your program gives as the roots of the quadratic in question. See page 9 of "What Every Scientist Should Know About Floating-Point Arithmetic" for a possible algorithm.
Let's start with the solution:
Step by Step solution about How to resolve the algorithm Roots of a quadratic function step by step in the GAP programming language
Source code in the gap programming language
QuadraticRoots := function(a, b, c)
local d;
d := Sqrt(b*b - 4*a*c);
return [ (-b+d)/(2*a), (-b-d)/(2*a) ];
end;
# Hint : E(12) is a 12th primitive root of 1
QuadraticRoots(2, 2, -1);
# [ 1/2*E(12)^4-1/2*E(12)^7+1/2*E(12)^8+1/2*E(12)^11,
# 1/2*E(12)^4+1/2*E(12)^7+1/2*E(12)^8-1/2*E(12)^11 ]
# This works also with floating-point numbers
QuadraticRoots(2.0, 2.0, -1.0);
# [ 0.366025, -1.36603 ]
You may also check:How to resolve the algorithm Exceptions step by step in the TXR programming language
You may also check:How to resolve the algorithm Loops/Increment loop index within loop body step by step in the V (Vlang) programming language
You may also check:How to resolve the algorithm Logical operations step by step in the Aikido programming language
You may also check:How to resolve the algorithm Integer sequence step by step in the NetRexx programming language
You may also check:How to resolve the algorithm Non-transitive dice step by step in the Julia programming language