How to resolve the algorithm Roots of a quadratic function step by step in the Liberty BASIC programming language

Published on 12 May 2024 09:40 PM

How to resolve the algorithm Roots of a quadratic function step by step in the Liberty BASIC programming language

Table of Contents

Problem Statement

Write a program to find the roots of a quadratic equation, i.e., solve the equation

a

x

2

b x + c

0

{\displaystyle ax^{2}+bx+c=0}

. Your program must correctly handle non-real roots, but it need not check that

a ≠ 0

{\displaystyle a\neq 0}

. The problem of solving a quadratic equation is a good example of how dangerous it can be to ignore the peculiarities of floating-point arithmetic. The obvious way to implement the quadratic formula suffers catastrophic loss of accuracy when one of the roots to be found is much closer to 0 than the other. In their classic textbook on numeric methods Computer Methods for Mathematical Computations, George Forsythe, Michael Malcolm, and Cleve Moler suggest trying the naive algorithm with

a

1

{\displaystyle a=1}

,

b

10

5

{\displaystyle b=-10^{5}}

, and

c

1

{\displaystyle c=1}

. (For double-precision floats, set

b

10

9

{\displaystyle b=-10^{9}}

.) Consider the following implementation in Ada: As we can see, the second root has lost all significant figures. The right answer is that X2 is about

10

− 6

{\displaystyle 10^{-6}}

. The naive method is numerically unstable. Suggested by Middlebrook (D-OA), a better numerical method: to define two parameters

q

a c

/

b

{\displaystyle q={\sqrt {ac}}/b}

and

f

1

/

2 +

1 − 4

q

2

/

2

{\displaystyle f=1/2+{\sqrt {1-4q^{2}}}/2}

and the two roots of the quardratic are:

− b

a

f

{\displaystyle {\frac {-b}{a}}f}

and

− c

b f

{\displaystyle {\frac {-c}{bf}}}

Task: do it better. This means that given

a

1

{\displaystyle a=1}

,

b

10

9

{\displaystyle b=-10^{9}}

, and

c

1

{\displaystyle c=1}

, both of the roots your program returns should be greater than

10

− 11

{\displaystyle 10^{-11}}

. Or, if your language can't do floating-point arithmetic any more precisely than single precision, your program should be able to handle

b

10

6

{\displaystyle b=-10^{6}}

. Either way, show what your program gives as the roots of the quadratic in question. See page 9 of "What Every Scientist Should Know About Floating-Point Arithmetic" for a possible algorithm.

Let's start with the solution:

Step by Step solution about How to resolve the algorithm Roots of a quadratic function step by step in the Liberty BASIC programming language

Source code in the liberty programming language

a=1:b=2:c=3
    'assume a<>0
    print quad$(a,b,c)
    end

function quad$(a,b,c)
    D=b^2-4*a*c
    x=-1*b
    if D<0 then
        quad$=str$(x/(2*a));" +i";str$(sqr(abs(D))/(2*a));" , ";str$(x/(2*a));" -i";str$(sqr(abs(D))/abs(2*a))
    else
        quad$=str$(x/(2*a)+sqr(D)/(2*a));" , ";str$(x/(2*a)-sqr(D)/(2*a))
    end if
end function

  

You may also check:How to resolve the algorithm Forward difference step by step in the Seed7 programming language
You may also check:How to resolve the algorithm Balanced brackets step by step in the Ada programming language
You may also check:How to resolve the algorithm Create a two-dimensional array at runtime step by step in the MATLAB / Octave programming language
You may also check:How to resolve the algorithm Knapsack problem/Bounded step by step in the Groovy programming language
You may also check:How to resolve the algorithm Vector products step by step in the GLSL programming language