How to resolve the algorithm Run-length encoding step by step in the AppleScript programming language
Published on 12 May 2024 09:40 PM
How to resolve the algorithm Run-length encoding step by step in the AppleScript programming language
Table of Contents
Problem Statement
Given a string containing uppercase characters (A-Z), compress repeated 'runs' of the same character by storing the length of that run, and provide a function to reverse the compression. The output can be anything, as long as you can recreate the input with it.
Note: the encoding step in the above example is the same as a step of the Look-and-say sequence.
Let's start with the solution:
Step by Step solution about How to resolve the algorithm Run-length encoding step by step in the AppleScript programming language
Source code in the applescript programming language
------------------ RUN-LENGTH ENCODING -----------------
-- encode :: String -> String
on encode(s)
script go
on |λ|(cs)
if {} ≠ cs then
set c to text 1 of cs
set {chunk, residue} to span(eq(c), rest of cs)
(c & (1 + (length of chunk)) as string) & |λ|(residue)
else
""
end if
end |λ|
end script
|λ|(characters of s) of go
end encode
-- decode :: String -> String
on decode(s)
script go
on |λ|(cs)
if {} ≠ cs then
set {ds, residue} to span(my isDigit, rest of cs)
set n to (ds as string) as integer
replicate(n, item 1 of cs) & |λ|(residue)
else
""
end if
end |λ|
end script
|λ|(characters of s) of go
end decode
--------------------------- TEST -------------------------
on run
set src to ¬
"WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW"
set encoded to encode(src)
set decoded to decode(encoded)
unlines({encoded, decoded, src = decoded})
end run
-------------------- GENERIC FUNCTIONS -------------------
-- eq :: a -> a -> Bool
on eq(a)
-- True if a and b are equivalent in terms
-- of the AppleScript (=) operator.
script go
on |λ|(b)
a = b
end |λ|
end script
end eq
-- isDigit :: Char -> Bool
on isDigit(c)
set n to (id of c)
48 ≤ n and 57 ≥ n
end isDigit
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
-- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary
-- assembly of a target length
-- replicate :: Int -> String -> String
on replicate(n, s)
-- Egyptian multiplication - progressively doubling a list,
-- appending stages of doubling to an accumulator where needed
-- for binary assembly of a target length
script p
on |λ|({n})
n ≤ 1
end |λ|
end script
script f
on |λ|({n, dbl, out})
if (n mod 2) > 0 then
set d to out & dbl
else
set d to out
end if
{n div 2, dbl & dbl, d}
end |λ|
end script
set xs to |until|(p, f, {n, s, ""})
item 2 of xs & item 3 of xs
end replicate
-- span :: (a -> Bool) -> [a] -> ([a], [a])
on span(p, xs)
-- The longest (possibly empty) prefix of xs
-- that contains only elements satisfying p,
-- tupled with the remainder of xs.
-- span(p, xs) eq (takeWhile(p, xs), dropWhile(p, xs))
script go
property mp : mReturn(p)
on |λ|(vs)
if {} ≠ vs then
set x to item 1 of vs
if |λ|(x) of mp then
set {ys, zs} to |λ|(rest of vs)
{{x} & ys, zs}
else
{{}, vs}
end if
else
{{}, {}}
end if
end |λ|
end script
|λ|(xs) of go
end span
-- unlines :: [String] -> String
on unlines(xs)
-- A single string formed by the intercalation
-- of a list of strings with the newline character.
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set s to xs as text
set my text item delimiters to dlm
s
end unlines
-- until :: (a -> Bool) -> (a -> a) -> a -> a
on |until|(p, f, x)
set v to x
set mp to mReturn(p)
set mf to mReturn(f)
repeat until mp's |λ|(v)
set v to mf's |λ|(v)
end repeat
v
end |until|
You may also check:How to resolve the algorithm Magnanimous numbers step by step in the Factor programming language
You may also check:How to resolve the algorithm Formal power series step by step in the D programming language
You may also check:How to resolve the algorithm Proper divisors step by step in the VBA programming language
You may also check:How to resolve the algorithm Execute a Markov algorithm step by step in the Java programming language
You may also check:How to resolve the algorithm Jacobi symbol step by step in the AutoHotkey programming language