How to resolve the algorithm Sorting algorithms/Quicksort step by step in the uBasic/4tH programming language
How to resolve the algorithm Sorting algorithms/Quicksort step by step in the uBasic/4tH programming language
Table of Contents
Problem Statement
Sort an array (or list) elements using the quicksort algorithm. The elements must have a strict weak order and the index of the array can be of any discrete type. For languages where this is not possible, sort an array of integers.
Quicksort, also known as partition-exchange sort, uses these steps.
The best pivot creates partitions of equal length (or lengths differing by 1). The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array). The run-time of Quicksort ranges from O(n log n) with the best pivots, to O(n2) with the worst pivots, where n is the number of elements in the array.
This is a simple quicksort algorithm, adapted from Wikipedia. A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays. Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with merge sort, because both sorts have an average time of O(n log n). Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end.
With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention! This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
Let's start with the solution:
Step by Step solution about How to resolve the algorithm Sorting algorithms/Quicksort step by step in the uBasic/4tH programming language
Source code in the ubasic/4th programming language
PRINT "Quick sort:"
n = FUNC (_InitArray)
PROC _ShowArray (n)
PROC _Quicksort (n)
PROC _ShowArray (n)
PRINT
END
_InnerQuick PARAM(2)
LOCAL(4)
IF b@ < 2 THEN RETURN
f@ = a@ + b@ - 1
c@ = a@
e@ = f@
d@ = @((c@ + e@) / 2)
DO
DO WHILE @(c@) < d@
c@ = c@ + 1
LOOP
DO WHILE @(e@) > d@
e@ = e@ - 1
LOOP
IF c@ - 1 < e@ THEN
PROC _Swap (c@, e@)
c@ = c@ + 1
e@ = e@ - 1
ENDIF
UNTIL c@ > e@
LOOP
IF a@ < e@ THEN PROC _InnerQuick (a@, e@ - a@ + 1)
IF c@ < f@ THEN PROC _InnerQuick (c@, f@ - c@ + 1)
RETURN
_Quicksort PARAM(1) ' Quick sort
PROC _InnerQuick (0, a@)
RETURN
_Swap PARAM(2) ' Swap two array elements
PUSH @(a@)
@(a@) = @(b@)
@(b@) = POP()
RETURN
_InitArray ' Init example array
PUSH 4, 65, 2, -31, 0, 99, 2, 83, 782, 1
FOR i = 0 TO 9
@(i) = POP()
NEXT
RETURN (i)
_ShowArray PARAM (1) ' Show array subroutine
FOR i = 0 TO a@-1
PRINT @(i),
NEXT
PRINT
RETURN
You may also check:How to resolve the algorithm Move-to-front algorithm step by step in the Bracmat programming language
You may also check:How to resolve the algorithm Square-free integers step by step in the Factor programming language
You may also check:How to resolve the algorithm String append step by step in the Genie programming language
You may also check:How to resolve the algorithm Environment variables step by step in the PureBasic programming language
You may also check:How to resolve the algorithm IBAN step by step in the PureBasic programming language