How to resolve the algorithm Stack step by step in the Icon and Unicon programming language

Published on 12 May 2024 09:40 PM

How to resolve the algorithm Stack step by step in the Icon and Unicon programming language

Table of Contents

Problem Statement

A stack is a container of elements with   last in, first out   access policy.   Sometimes it also called LIFO. The stack is accessed through its top. The basic stack operations are:

Sometimes the last pushed stack element is made accessible for immutable access (for read) or mutable access (for write):

Stacks allow a very simple hardware implementation. They are common in almost all processors. In programming, stacks are also very popular for their way (LIFO) of resource management, usually memory. Nested scopes of language objects are naturally implemented by a stack (sometimes by multiple stacks). This is a classical way to implement local variables of a re-entrant or recursive subprogram. Stacks are also used to describe a formal computational framework. See stack machine. Many algorithms in pattern matching, compiler construction (e.g. recursive descent parsers), and machine learning (e.g. based on tree traversal) have a natural representation in terms of stacks.

Create a stack supporting the basic operations: push, pop, empty.

Let's start with the solution:

Step by Step solution about How to resolve the algorithm Stack step by step in the Icon and Unicon programming language

Source code in the icon programming language

procedure main()
stack := []                                     # new empty stack
push(stack,1)                                   # add item
push(stack,"hello",table(),set(),[],5)          # add more items of mixed types in order left to right
y := top(stack)                                 # peek
x := pop(stack)                                 # remove item
write("The stack is ",if isempty(stack) then "empty" else "not empty")
end

procedure isempty(x)           #: test if a datum is empty, return the datum or fail (task requirement)
if *x = 0 then return x        #  in practice just write *x = 0 or *x ~= 0 for is/isn't empty
end

procedure top(x)               #: return top element w/o changing stack
return x[1]                    #  in practice, just use x[1]
end


  

You may also check:How to resolve the algorithm User input/Text step by step in the Red programming language
You may also check:How to resolve the algorithm Write entire file step by step in the Java programming language
You may also check:How to resolve the algorithm Variable size/Set step by step in the 11l programming language
You may also check:How to resolve the algorithm Bulls and cows step by step in the Elixir programming language
You may also check:How to resolve the algorithm Gamma function step by step in the RPL programming language