How to resolve the algorithm Tupper's self-referential formula step by step in the Fōrmulæ programming language
How to resolve the algorithm Tupper's self-referential formula step by step in the Fōrmulæ programming language
Table of Contents
Problem Statement
Jeff Tupper, in his 2001 paper "Reliable Two-Dimensional Graphing Methods for Mathematical Formulae with Two Free Variables", shows a set of methods to graph equations and inequalities with two variables in the cartesian plane. One of the examples of the paper, refers to the inequality:
1 2
<
⌊
m o d
(
⌊
y 17
⌋
2
− 17 ⌊ x ⌋ −
m o d
(
⌊ y ⌋ , 17
)
, 2
)
⌋
{\displaystyle {\frac {1}{2}}<\left\lfloor \mathrm {mod} \left(\left\lfloor {\frac {y}{17}}\right\rfloor 2^{-17\lfloor x\rfloor -\mathrm {mod} \left(\lfloor y\rfloor ,17\right)},2\right)\right\rfloor }
That inequality, once plotted in the range 0 ≤ x ≤ 106 and k ≤ y ≤ k + 17 for k = 960, 939, 379, 918, 958, 884, 971, 672, 962, 127, 852, 754, 715, 004, 339, 660, 129, 306, 651, 505, 519, 271, 702, 802, 395, 266, 424, 689, 642, 842, 174, 350, 718, 121, 267, 153, 782, 770, 623, 355, 993, 237, 280, 874, 144, 307, 891, 325, 963, 941, 337, 723, 487, 857, 735, 749, 823, 926, 629, 715, 517, 173, 716, 995, 165, 232, 890, 538, 221, 612, 403, 238, 855, 866, 184, 013, 235, 585, 136, 048, 828, 693, 337, 902, 491, 454, 229, 288, 667, 081, 096, 184, 496, 091, 705, 183, 454, 067, 827, 731, 551, 705, 405, 381, 627, 380, 967, 602, 565, 625, 016, 981, 482, 083, 418, 783, 163, 849, 115, 590, 225, 610, 003, 652, 351, 370, 343, 874, 461, 848, 378, 737, 238, 198, 224, 849, 863, 465, 033, 159, 410, 054, 974, 700, 593, 138, 339, 226, 497, 249, 461, 751, 545, 728, 366, 702, 369, 745, 461, 014, 655, 997, 933, 798, 537, 483, 143, 786, 841, 806, 593, 422, 227, 898, 388, 722, 980, 000, 748, 404, 719 produces a drawing that visually mimics the inequality itself, hence it is called self-referential. Although the inequality is intended to be drawn on the continuum of the cartesian plane, the drawing can be performed iterating over the integer values of both the horizontal and vertical ranges. Make a drawing of the Tupper's formula, either using text, a matrix or creating an image. This task requires arbitrary precision integer operations. If your language does not intrinsically support that, you can use a library. The value of k is an encoding of the bitmap of the image, therefore any 17-width bitmap can be produced, using its associated encoded value as k.
Let's start with the solution:
Step by Step solution about How to resolve the algorithm Tupper's self-referential formula step by step in the Fōrmulæ programming language
Source code in the fōrmulæ programming language
You may also check:How to resolve the algorithm N-queens problem step by step in the QB64 programming language
You may also check:How to resolve the algorithm Loops/Downward for step by step in the ALGOL W programming language
You may also check:How to resolve the algorithm Sieve of Eratosthenes step by step in the Erlang programming language
You may also check:How to resolve the algorithm Reverse a string step by step in the Vedit macro language programming language
You may also check:How to resolve the algorithm Linear congruential generator step by step in the Oforth programming language