How to resolve the algorithm Universal Turing machine step by step in the Scala programming language
How to resolve the algorithm Universal Turing machine step by step in the Scala programming language
Table of Contents
Problem Statement
One of the foundational mathematical constructs behind computer science is the universal Turing Machine.
(Alan Turing introduced the idea of such a machine in 1936–1937.) Indeed one way to definitively prove that a language is turing-complete is to implement a universal Turing machine in it.
Simulate such a machine capable
of taking the definition of any other Turing machine and executing it.
Of course, you will not have an infinite tape,
but you should emulate this as much as is possible.
The three permissible actions on the tape are "left", "right" and "stay".
To test your universal Turing machine (and prove your programming language
is Turing complete!), you should execute the following two Turing machines
based on the following definitions.
Simple incrementer
The input for this machine should be a tape of 1 1 1
Three-state busy beaver
The input for this machine should be an empty tape.
Bonus: 5-state, 2-symbol probable Busy Beaver machine from Wikipedia
The input for this machine should be an empty tape. This machine runs for more than 47 millions steps.
Let's start with the solution:
Step by Step solution about How to resolve the algorithm Universal Turing machine step by step in the Scala programming language
Source code in the scala programming language
package utm.scala
import scala.annotation.tailrec
import scala.language.implicitConversions
/**
* Implementation of Universal Turing Machine in Scala that can simulate an arbitrary
* Turing machine on arbitrary input
*
* @author Abdulla Abdurakhmanov (https://github.com/abdolence/utms)
*/
class UniversalTuringMachine[S](
val rules: List[UTMRule[S]],
val initialState: S,
val finalStates: Set[S],
val blankSymbol: String,
val inputTapeVals: Iterable[String],
printEveryIter: Int = 1
) {
private val initialTape = UTMTape( inputTapeVals.toVector, 0, blankSymbol )
@tailrec
private def iterate( state: S, curIteration: Int, tape: UTMTape ): UTMTape = {
if (curIteration % printEveryIter == 0) {
print( s"${curIteration}: ${state}: " )
tape.printTape()
}
if (finalStates.contains( state )) {
println( s"Finished in the final state: ${state}" )
tape.printTape()
tape
} else {
rules.find(rule => rule.state == state && rule.fromSymbol == tape.current() ) match {
case Some( rule ) => {
val updatedTape = tape.updated( rule.toSymbol, rule.action )
iterate( rule.toState, curIteration + 1, updatedTape )
}
case _ => {
println(
s"Finished: no suitable rules found for ${state}/${tape.current()}"
)
tape.printTape()
tape
}
}
}
}
def run(): UTMTape =
iterate( state = initialState, curIteration = 0, tape = initialTape )
}
/**
* Universal Turing Machine actions
*/
sealed trait UTMAction
object UTMAction {
case object left extends UTMAction
case object right extends UTMAction
case object stay extends UTMAction
}
/**
* Universal Turing Machine rule definition
*/
case class UTMRule[S]( state: S, fromSymbol: String, toSymbol: String, action: UTMAction, toState: S )
object UTMRule {
implicit def tupleToUTMLRule[S](
tuple: ( S, String, String, UTMAction, S )
): UTMRule[S] =
UTMRule[S]( tuple._1, tuple._2, tuple._3, tuple._4, tuple._5 )
}
/**
* Universal Turing Machine Tape
*/
case class UTMTape( content: Vector[String], position: Int, blankSymbol: String ) {
private def updateContentAtPos( symbol: String ) = {
if (position >= content.length) {
content :+ symbol
} else if (position < 0) {
symbol +: content
} else if (content( position ) != symbol)
content.updated( position, symbol )
else
content
}
private[scala] def updated( symbol: String, action: UTMAction ): UTMTape = {
val updatedTape =
this.copy( content = updateContentAtPos( symbol ), position = action match {
case UTMAction.left => position - 1
case UTMAction.right => position + 1
case UTMAction.stay => position
} )
if (updatedTape.position < 0) {
updatedTape.copy(
content = blankSymbol +: updatedTape.content,
position = 0
)
} else if (updatedTape.position >= updatedTape.content.length) {
updatedTape.copy( content = updatedTape.content :+ blankSymbol )
} else
updatedTape
}
private[scala] def current(): String = {
if (content.isDefinedAt( position ))
content( position )
else
blankSymbol
}
def printTape(): Unit = {
print( "[" )
if (position < 0)
print( "˅" )
content.zipWithIndex.foreach {
case ( symbol, index ) =>
if (position == index)
print( "˅" )
else
print( " " )
print( s"$symbol" )
}
if (position >= content.length)
print( "˅" )
println( "]" )
}
}
object UniversalTuringMachine extends App {
main()
def main(): Unit = {
import UTMAction._
def createIncrementMachine() = {
sealed trait IncrementStates
case object q0 extends IncrementStates
case object qf extends IncrementStates
new UniversalTuringMachine[IncrementStates](
rules = List( ( q0, "1", "1", right, q0 ), ( q0, "B", "1", stay, qf ) ),
initialState = q0,
finalStates = Set( qf ),
blankSymbol = "B",
inputTapeVals = Seq( "1", "1", "1" )
).run()
}
def createThreeStateBusyBeaver() = {
sealed trait ThreeStateBusyStates
case object a extends ThreeStateBusyStates
case object b extends ThreeStateBusyStates
case object c extends ThreeStateBusyStates
case object halt extends ThreeStateBusyStates
new UniversalTuringMachine[ThreeStateBusyStates](
rules = List(
( a, "0", "1", right, b ),
( a, "1", "1", left, c ),
( b, "0", "1", left, a ),
( b, "1", "1", right, b ),
( c, "0", "1", left, b ),
( c, "1", "1", stay, halt )
),
initialState = a,
finalStates = Set( halt ),
blankSymbol = "0",
inputTapeVals = Seq()
).run()
}
def createFiveState2SymBusyBeaverMachine() = {
sealed trait FiveBeaverStates
case object FA extends FiveBeaverStates
case object FB extends FiveBeaverStates
case object FC extends FiveBeaverStates
case object FD extends FiveBeaverStates
case object FE extends FiveBeaverStates
case object FH extends FiveBeaverStates
new UniversalTuringMachine[FiveBeaverStates](
rules = List(
( FA, "0", "1", right, FB ),
( FA, "1", "1", left, FC ),
( FB, "0", "1", right, FC ),
( FB, "1", "1", right, FB ),
( FC, "0", "1", right, FD ),
( FC, "1", "0", left, FE ),
( FD, "0", "1", left, FA ),
( FD, "1", "1", left, FD ),
( FE, "0", "1", stay, FH ),
( FE, "1", "0", left, FA )
),
initialState = FA,
finalStates = Set( FH ),
blankSymbol = "0",
inputTapeVals = Seq(),
printEveryIter = 100000
).run()
}
createIncrementMachine()
createThreeStateBusyBeaver()
// careful here, 47 mln iterations
createFiveState2SymBusyBeaverMachine()
}
}
You may also check:How to resolve the algorithm Loops/Do-while step by step in the zkl programming language
You may also check:How to resolve the algorithm Comma quibbling step by step in the MATLAB / Octave programming language
You may also check:How to resolve the algorithm File size distribution step by step in the Phix programming language
You may also check:How to resolve the algorithm SEDOLs step by step in the Phix programming language
You may also check:How to resolve the algorithm Synchronous concurrency step by step in the Visual Basic .NET programming language